
March 16th and 30th 2026

Benôıt Corsini

An introduction to Matplotlib

Visualization using Python

Disclaimers

Visualization using Python Benôıt Corsini

Before starting, download the file below and run it to make sure all relevant libraries are imported
(the content of the file will be explained at the beginning of the presentation).

https://www.benoitcorsini.com/files/matplotlib/q0.py

• This presentation is composed of several coding and visual questions.
◦ A “correct” answer is not a word for word file or a pixel for pixel image, but rather a method

that provides a similar outcome.
◦ The solution of the different questions are available online, by replacing the 0 from the above

link with the corresponding question number.
◦ Naturally, it is recommended to download the solution only after attempting the question.

• matplotlib is a massive package and not all methods and attributes can be explained in detail
here: finding the relevant information is also part of this workshop.

Disclaimers

Visualization using Python Benôıt Corsini

Before starting, download the file below and run it to make sure all relevant libraries are imported
(the content of the file will be explained at the beginning of the presentation).

https://www.benoitcorsini.com/files/matplotlib/q0.py

• This presentation is composed of several coding and visual questions.
◦ A “correct” answer is not a word for word file or a pixel for pixel image, but rather a method

that provides a similar outcome.
◦ The solution of the different questions are available online, by replacing the 0 from the above

link with the corresponding question number.
◦ Naturally, it is recommended to download the solution only after attempting the question.

• matplotlib is a massive package and not all methods and attributes can be explained in detail
here: finding the relevant information is also part of this workshop.

Disclaimers

Visualization using Python Benôıt Corsini

Before starting, download the file below and run it to make sure all relevant libraries are imported
(the content of the file will be explained at the beginning of the presentation).

https://www.benoitcorsini.com/files/matplotlib/q0.py

• This presentation is composed of several coding and visual questions.

◦ A “correct” answer is not a word for word file or a pixel for pixel image, but rather a method
that provides a similar outcome.

◦ The solution of the different questions are available online, by replacing the 0 from the above
link with the corresponding question number.

◦ Naturally, it is recommended to download the solution only after attempting the question.
• matplotlib is a massive package and not all methods and attributes can be explained in detail

here: finding the relevant information is also part of this workshop.

Disclaimers

Visualization using Python Benôıt Corsini

Before starting, download the file below and run it to make sure all relevant libraries are imported
(the content of the file will be explained at the beginning of the presentation).

https://www.benoitcorsini.com/files/matplotlib/q0.py

• This presentation is composed of several coding and visual questions.
◦ A “correct” answer is not a word for word file or a pixel for pixel image, but rather a method

that provides a similar outcome.

◦ The solution of the different questions are available online, by replacing the 0 from the above
link with the corresponding question number.

◦ Naturally, it is recommended to download the solution only after attempting the question.
• matplotlib is a massive package and not all methods and attributes can be explained in detail

here: finding the relevant information is also part of this workshop.

Disclaimers

Visualization using Python Benôıt Corsini

Before starting, download the file below and run it to make sure all relevant libraries are imported
(the content of the file will be explained at the beginning of the presentation).

https://www.benoitcorsini.com/files/matplotlib/q0.py

• This presentation is composed of several coding and visual questions.
◦ A “correct” answer is not a word for word file or a pixel for pixel image, but rather a method

that provides a similar outcome.
◦ The solution of the different questions are available online, by replacing the 0 from the above

link with the corresponding question number.

◦ Naturally, it is recommended to download the solution only after attempting the question.
• matplotlib is a massive package and not all methods and attributes can be explained in detail

here: finding the relevant information is also part of this workshop.

Disclaimers

Visualization using Python Benôıt Corsini

Before starting, download the file below and run it to make sure all relevant libraries are imported
(the content of the file will be explained at the beginning of the presentation).

https://www.benoitcorsini.com/files/matplotlib/q0.py

• This presentation is composed of several coding and visual questions.
◦ A “correct” answer is not a word for word file or a pixel for pixel image, but rather a method

that provides a similar outcome.
◦ The solution of the different questions are available online, by replacing the 0 from the above

link with the corresponding question number.
◦ Naturally, it is recommended to download the solution only after attempting the question.

• matplotlib is a massive package and not all methods and attributes can be explained in detail
here: finding the relevant information is also part of this workshop.

Disclaimers

Visualization using Python Benôıt Corsini

Before starting, download the file below and run it to make sure all relevant libraries are imported
(the content of the file will be explained at the beginning of the presentation).

https://www.benoitcorsini.com/files/matplotlib/q0.py

• This presentation is composed of several coding and visual questions.
◦ A “correct” answer is not a word for word file or a pixel for pixel image, but rather a method

that provides a similar outcome.
◦ The solution of the different questions are available online, by replacing the 0 from the above

link with the corresponding question number.
◦ Naturally, it is recommended to download the solution only after attempting the question.

• matplotlib is a massive package and not all methods and attributes can be explained in detail
here: finding the relevant information is also part of this workshop.

Table of contents

Visualization using Python Benôıt Corsini

•

•

•

•

•

Extending the Figure class

Importing images

Creating shapes

Creating drawings

Conclusion

Table of contents

Visualization using Python Benôıt CorsiniExtending the Figure class

•

•

•

•

•

Extending the Figure class

Importing images

Creating shapes

Creating drawings

Conclusion

Importing packages

Visualization using Python Benôıt CorsiniExtending the Figure class

Before starting, we need to import a few packages.
• numpy: a package for handling arrays.
• os: a package for handling files.
• cv2: a package for creating videos.
• matplotlib: a package for creating images and figures, with many subclasses. Among the relevant

subclasses, the presentation focuses on
◦ .patches: a set of classes to create shapes on the figure.
◦ .path: a set of classes to handle lines and drawings.

Importing packages

Visualization using Python Benôıt CorsiniExtending the Figure class

Before starting, we need to import a few packages.

• numpy: a package for handling arrays.
• os: a package for handling files.
• cv2: a package for creating videos.
• matplotlib: a package for creating images and figures, with many subclasses. Among the relevant

subclasses, the presentation focuses on
◦ .patches: a set of classes to create shapes on the figure.
◦ .path: a set of classes to handle lines and drawings.

Importing packages

Visualization using Python Benôıt CorsiniExtending the Figure class

Before starting, we need to import a few packages.
• numpy: a package for handling arrays.

• os: a package for handling files.
• cv2: a package for creating videos.
• matplotlib: a package for creating images and figures, with many subclasses. Among the relevant

subclasses, the presentation focuses on
◦ .patches: a set of classes to create shapes on the figure.
◦ .path: a set of classes to handle lines and drawings.

Importing packages

Visualization using Python Benôıt CorsiniExtending the Figure class

Before starting, we need to import a few packages.
• numpy: a package for handling arrays.
• os: a package for handling files.

• cv2: a package for creating videos.
• matplotlib: a package for creating images and figures, with many subclasses. Among the relevant

subclasses, the presentation focuses on
◦ .patches: a set of classes to create shapes on the figure.
◦ .path: a set of classes to handle lines and drawings.

Importing packages

Visualization using Python Benôıt CorsiniExtending the Figure class

Before starting, we need to import a few packages.
• numpy: a package for handling arrays.
• os: a package for handling files.
• cv2: a package for creating videos.

• matplotlib: a package for creating images and figures, with many subclasses. Among the relevant
subclasses, the presentation focuses on
◦ .patches: a set of classes to create shapes on the figure.
◦ .path: a set of classes to handle lines and drawings.

Importing packages

Visualization using Python Benôıt CorsiniExtending the Figure class

Before starting, we need to import a few packages.
• numpy: a package for handling arrays.
• os: a package for handling files.
• cv2: a package for creating videos.
• matplotlib: a package for creating images and figures, with many subclasses. Among the relevant

subclasses, the presentation focuses on

◦ .patches: a set of classes to create shapes on the figure.
◦ .path: a set of classes to handle lines and drawings.

Importing packages

Visualization using Python Benôıt CorsiniExtending the Figure class

Before starting, we need to import a few packages.
• numpy: a package for handling arrays.
• os: a package for handling files.
• cv2: a package for creating videos.
• matplotlib: a package for creating images and figures, with many subclasses. Among the relevant

subclasses, the presentation focuses on
◦ .patches: a set of classes to create shapes on the figure.

◦ .path: a set of classes to handle lines and drawings.

Importing packages

Visualization using Python Benôıt CorsiniExtending the Figure class

Before starting, we need to import a few packages.
• numpy: a package for handling arrays.
• os: a package for handling files.
• cv2: a package for creating videos.
• matplotlib: a package for creating images and figures, with many subclasses. Among the relevant

subclasses, the presentation focuses on
◦ .patches: a set of classes to create shapes on the figure.
◦ .path: a set of classes to handle lines and drawings.

Importing packages

Visualization using Python Benôıt CorsiniExtending the Figure class

1. import os
2. import cv2
3. import numpy as np
4. import matplotlib.pyplot as plt
5. from matplotlib.patches import *
6. from matplotlib.path import Path
7. from matplotlib.figure import Figure
8. from matplotlib.text import TextPath

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

We now create a new class called Visual, which we use to organize our code.
• Classes are objects with a set of built-in methods (for example float, list, dict, etc).
• We create a new element of the Visual class by calling vis = Visual().
• We run built-in methods by calling vis.some_method(...).

For the sake of this presentation, our class has two particularities.
• It is a subclass of the Figure class from matplotlib and thus uses pre-implemented arguments

and methods using *args, **kwargs, and super().
• It has a default square method using the @classmethod decorator, which creates a square figure

and obtained by calling vis = Visual.square(...).

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

We now create a new class called Visual, which we use to organize our code.

• Classes are objects with a set of built-in methods (for example float, list, dict, etc).
• We create a new element of the Visual class by calling vis = Visual().
• We run built-in methods by calling vis.some_method(...).

For the sake of this presentation, our class has two particularities.
• It is a subclass of the Figure class from matplotlib and thus uses pre-implemented arguments

and methods using *args, **kwargs, and super().
• It has a default square method using the @classmethod decorator, which creates a square figure

and obtained by calling vis = Visual.square(...).

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

We now create a new class called Visual, which we use to organize our code.
• Classes are objects with a set of built-in methods (for example float, list, dict, etc).

• We create a new element of the Visual class by calling vis = Visual().
• We run built-in methods by calling vis.some_method(...).

For the sake of this presentation, our class has two particularities.
• It is a subclass of the Figure class from matplotlib and thus uses pre-implemented arguments

and methods using *args, **kwargs, and super().
• It has a default square method using the @classmethod decorator, which creates a square figure

and obtained by calling vis = Visual.square(...).

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

We now create a new class called Visual, which we use to organize our code.
• Classes are objects with a set of built-in methods (for example float, list, dict, etc).
• We create a new element of the Visual class by calling vis = Visual().

• We run built-in methods by calling vis.some_method(...).

For the sake of this presentation, our class has two particularities.
• It is a subclass of the Figure class from matplotlib and thus uses pre-implemented arguments

and methods using *args, **kwargs, and super().
• It has a default square method using the @classmethod decorator, which creates a square figure

and obtained by calling vis = Visual.square(...).

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

We now create a new class called Visual, which we use to organize our code.
• Classes are objects with a set of built-in methods (for example float, list, dict, etc).
• We create a new element of the Visual class by calling vis = Visual().
• We run built-in methods by calling vis.some_method(...).

For the sake of this presentation, our class has two particularities.
• It is a subclass of the Figure class from matplotlib and thus uses pre-implemented arguments

and methods using *args, **kwargs, and super().
• It has a default square method using the @classmethod decorator, which creates a square figure

and obtained by calling vis = Visual.square(...).

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

We now create a new class called Visual, which we use to organize our code.
• Classes are objects with a set of built-in methods (for example float, list, dict, etc).
• We create a new element of the Visual class by calling vis = Visual().
• We run built-in methods by calling vis.some_method(...).

For the sake of this presentation, our class has two particularities.

• It is a subclass of the Figure class from matplotlib and thus uses pre-implemented arguments
and methods using *args, **kwargs, and super().

• It has a default square method using the @classmethod decorator, which creates a square figure
and obtained by calling vis = Visual.square(...).

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

We now create a new class called Visual, which we use to organize our code.
• Classes are objects with a set of built-in methods (for example float, list, dict, etc).
• We create a new element of the Visual class by calling vis = Visual().
• We run built-in methods by calling vis.some_method(...).

For the sake of this presentation, our class has two particularities.
• It is a subclass of the Figure class from matplotlib and thus uses pre-implemented arguments

and methods using *args, **kwargs, and super().

• It has a default square method using the @classmethod decorator, which creates a square figure
and obtained by calling vis = Visual.square(...).

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

We now create a new class called Visual, which we use to organize our code.
• Classes are objects with a set of built-in methods (for example float, list, dict, etc).
• We create a new element of the Visual class by calling vis = Visual().
• We run built-in methods by calling vis.some_method(...).

For the sake of this presentation, our class has two particularities.
• It is a subclass of the Figure class from matplotlib and thus uses pre-implemented arguments

and methods using *args, **kwargs, and super().
• It has a default square method using the @classmethod decorator, which creates a square figure

and obtained by calling vis = Visual.square(...).

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

12. class Visual(Figure):

. creates a subclass of Figure

13.

14. def __init__(self, *args, **kwargs):

. allows pre-existing arguments

15. super().__init__(*args, **kwargs)

. applies the arguments to the superclass

16.

17. @classmethod

. creates a default squared structure

18. def square(cls, *args, **kwargs):
19. return cls(figsize=(1, 1), *args, **kwargs)
20.

21.

22.

23. if __name__ == ’__main__’:

. prevents this code from running elsewhere

24. vis = Visual.square(dpi=500)

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

12. class Visual(Figure): . creates a subclass of Figure
13.

14. def __init__(self, *args, **kwargs):

. allows pre-existing arguments

15. super().__init__(*args, **kwargs)

. applies the arguments to the superclass

16.

17. @classmethod

. creates a default squared structure

18. def square(cls, *args, **kwargs):
19. return cls(figsize=(1, 1), *args, **kwargs)
20.

21.

22.

23. if __name__ == ’__main__’:

. prevents this code from running elsewhere

24. vis = Visual.square(dpi=500)

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

12. class Visual(Figure): . creates a subclass of Figure
13.

14. def __init__(self, *args, **kwargs): . allows pre-existing arguments
15. super().__init__(*args, **kwargs)

. applies the arguments to the superclass

16.

17. @classmethod

. creates a default squared structure

18. def square(cls, *args, **kwargs):
19. return cls(figsize=(1, 1), *args, **kwargs)
20.

21.

22.

23. if __name__ == ’__main__’:

. prevents this code from running elsewhere

24. vis = Visual.square(dpi=500)

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

12. class Visual(Figure): . creates a subclass of Figure
13.

14. def __init__(self, *args, **kwargs): . allows pre-existing arguments
15. super().__init__(*args, **kwargs) . applies the arguments to the superclass
16.

17. @classmethod

. creates a default squared structure

18. def square(cls, *args, **kwargs):
19. return cls(figsize=(1, 1), *args, **kwargs)
20.

21.

22.

23. if __name__ == ’__main__’:

. prevents this code from running elsewhere

24. vis = Visual.square(dpi=500)

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

12. class Visual(Figure): . creates a subclass of Figure
13.

14. def __init__(self, *args, **kwargs): . allows pre-existing arguments
15. super().__init__(*args, **kwargs) . applies the arguments to the superclass
16.

17. @classmethod . creates a default squared structure
18. def square(cls, *args, **kwargs):
19. return cls(figsize=(1, 1), *args, **kwargs)
20.

21.

22.

23. if __name__ == ’__main__’:

. prevents this code from running elsewhere

24. vis = Visual.square(dpi=500)

Initializing the file

Visualization using Python Benôıt CorsiniExtending the Figure class

12. class Visual(Figure): . creates a subclass of Figure
13.

14. def __init__(self, *args, **kwargs): . allows pre-existing arguments
15. super().__init__(*args, **kwargs) . applies the arguments to the superclass
16.

17. @classmethod . creates a default squared structure
18. def square(cls, *args, **kwargs):
19. return cls(figsize=(1, 1), *args, **kwargs)
20.

21.

22.

23. if __name__ == ’__main__’: . prevents this code from running elsewhere
24. vis = Visual.square(dpi=500)

Initializing the figure and axes

Visualization using Python Benôıt CorsiniExtending the Figure class

Since we want to create visuals and not graphs, we need to remove the extra space and axes that are
part of a default Figure element.
• In matplotlib, the Figure class always requires at least one Axes class in order to represent

objects on the figure, using the add_subplot(...) method.
• In order to remove the extra space around the figure, we call subplots_adjust(...).
• In order to hide the axes on the figure, we call set_axis_off(...)
• Finally, we put this code into a hidden dunder (double-under) method for clarity.

Initializing the figure and axes

Visualization using Python Benôıt CorsiniExtending the Figure class

Since we want to create visuals and not graphs, we need to remove the extra space and axes that are
part of a default Figure element.

• In matplotlib, the Figure class always requires at least one Axes class in order to represent
objects on the figure, using the add_subplot(...) method.

• In order to remove the extra space around the figure, we call subplots_adjust(...).
• In order to hide the axes on the figure, we call set_axis_off(...)
• Finally, we put this code into a hidden dunder (double-under) method for clarity.

Initializing the figure and axes

Visualization using Python Benôıt CorsiniExtending the Figure class

Since we want to create visuals and not graphs, we need to remove the extra space and axes that are
part of a default Figure element.
• In matplotlib, the Figure class always requires at least one Axes class in order to represent

objects on the figure, using the add_subplot(...) method.

• In order to remove the extra space around the figure, we call subplots_adjust(...).
• In order to hide the axes on the figure, we call set_axis_off(...)
• Finally, we put this code into a hidden dunder (double-under) method for clarity.

Initializing the figure and axes

Visualization using Python Benôıt CorsiniExtending the Figure class

Since we want to create visuals and not graphs, we need to remove the extra space and axes that are
part of a default Figure element.
• In matplotlib, the Figure class always requires at least one Axes class in order to represent

objects on the figure, using the add_subplot(...) method.
• In order to remove the extra space around the figure, we call subplots_adjust(...).

• In order to hide the axes on the figure, we call set_axis_off(...)
• Finally, we put this code into a hidden dunder (double-under) method for clarity.

Initializing the figure and axes

Visualization using Python Benôıt CorsiniExtending the Figure class

Since we want to create visuals and not graphs, we need to remove the extra space and axes that are
part of a default Figure element.
• In matplotlib, the Figure class always requires at least one Axes class in order to represent

objects on the figure, using the add_subplot(...) method.
• In order to remove the extra space around the figure, we call subplots_adjust(...).
• In order to hide the axes on the figure, we call set_axis_off(...)

• Finally, we put this code into a hidden dunder (double-under) method for clarity.

Initializing the figure and axes

Visualization using Python Benôıt CorsiniExtending the Figure class

Since we want to create visuals and not graphs, we need to remove the extra space and axes that are
part of a default Figure element.
• In matplotlib, the Figure class always requires at least one Axes class in order to represent

objects on the figure, using the add_subplot(...) method.
• In order to remove the extra space around the figure, we call subplots_adjust(...).
• In order to hide the axes on the figure, we call set_axis_off(...)
• Finally, we put this code into a hidden dunder (double-under) method for clarity.

Initializing the figure and axes

Visualization using Python Benôıt CorsiniExtending the Figure class

14. def __init__(self, *args, **kwargs):
15. super().__init__(*args, **kwargs)
16. self.__figure__()

. a hidden dunder method

17.

18. @classmethod
19. def square(cls, *args, **kwargs):
20. return cls(figsize=(1, 1), *args, **kwargs)
21.

22. def __figure__(self):
23. self.subplots_adjust(left=0, right=1, bottom=0, top=1)

. removes the extra space around the figure

24. self.ax = self.add_subplot()

. adds a new Axes element

25. self.ax.set_axis_off()

. .removes the axis from the figure

Initializing the figure and axes

Visualization using Python Benôıt CorsiniExtending the Figure class

14. def __init__(self, *args, **kwargs):
15. super().__init__(*args, **kwargs)
16. self.__figure__() . a hidden dunder method
17.

18. @classmethod
19. def square(cls, *args, **kwargs):
20. return cls(figsize=(1, 1), *args, **kwargs)
21.

22. def __figure__(self):
23. self.subplots_adjust(left=0, right=1, bottom=0, top=1)

. removes the extra space around the figure

24. self.ax = self.add_subplot()

. adds a new Axes element

25. self.ax.set_axis_off()

. .removes the axis from the figure

Initializing the figure and axes

Visualization using Python Benôıt CorsiniExtending the Figure class

14. def __init__(self, *args, **kwargs):
15. super().__init__(*args, **kwargs)
16. self.__figure__() . a hidden dunder method
17.

18. @classmethod
19. def square(cls, *args, **kwargs):
20. return cls(figsize=(1, 1), *args, **kwargs)
21.

22. def __figure__(self):
23. self.subplots_adjust(left=0, right=1, bottom=0, top=1) removes the extra space around the figure
24. self.ax = self.add_subplot()

. adds a new Axes element

25. self.ax.set_axis_off()

. .removes the axis from the figure

Initializing the figure and axes

Visualization using Python Benôıt CorsiniExtending the Figure class

14. def __init__(self, *args, **kwargs):
15. super().__init__(*args, **kwargs)
16. self.__figure__() . a hidden dunder method
17.

18. @classmethod
19. def square(cls, *args, **kwargs):
20. return cls(figsize=(1, 1), *args, **kwargs)
21.

22. def __figure__(self):
23. self.subplots_adjust(left=0, right=1, bottom=0, top=1) removes the extra space around the figure
24. self.ax = self.add_subplot() . adds a new Axes element
25. self.ax.set_axis_off()

. .removes the axis from the figure

Initializing the figure and axes

Visualization using Python Benôıt CorsiniExtending the Figure class

14. def __init__(self, *args, **kwargs):
15. super().__init__(*args, **kwargs)
16. self.__figure__() . a hidden dunder method
17.

18. @classmethod
19. def square(cls, *args, **kwargs):
20. return cls(figsize=(1, 1), *args, **kwargs)
21.

22. def __figure__(self):
23. self.subplots_adjust(left=0, right=1, bottom=0, top=1) removes the extra space around the figure
24. self.ax = self.add_subplot() . adds a new Axes element
25. self.ax.set_axis_off() .removes the axis from the figure

Auto-creating frames

Visualization using Python Benôıt CorsiniExtending the Figure class

Since we are interested in creating videos, we add a couple of attributes and methods.
• For the video renderer, we need to have the number of frames per second (fps) which we add as

an input of the class.
• To simplify the creation of the different frames, we implement a new_frame method, which auto-

matically organizes saves the current state of the figure and increases the frame count by 1.

Auto-creating frames

Visualization using Python Benôıt CorsiniExtending the Figure class

Since we are interested in creating videos, we add a couple of attributes and methods.

• For the video renderer, we need to have the number of frames per second (fps) which we add as
an input of the class.

• To simplify the creation of the different frames, we implement a new_frame method, which auto-
matically organizes saves the current state of the figure and increases the frame count by 1.

Auto-creating frames

Visualization using Python Benôıt CorsiniExtending the Figure class

Since we are interested in creating videos, we add a couple of attributes and methods.
• For the video renderer, we need to have the number of frames per second (fps) which we add as

an input of the class.

• To simplify the creation of the different frames, we implement a new_frame method, which auto-
matically organizes saves the current state of the figure and increases the frame count by 1.

Auto-creating frames

Visualization using Python Benôıt CorsiniExtending the Figure class

Since we are interested in creating videos, we add a couple of attributes and methods.
• For the video renderer, we need to have the number of frames per second (fps) which we add as

an input of the class.
• To simplify the creation of the different frames, we implement a new_frame method, which auto-

matically organizes saves the current state of the figure and increases the frame count by 1.

Auto-creating frames

Visualization using Python Benôıt CorsiniExtending the Figure class

14. def __init__(self, fps=30, *args, **kwargs):
15. super().__init__(*args, **kwargs)
16. self.__figure__()
17. self.fps = fps

. adds the frames per second parameter

18. self.frame_index = 0

. an attribute to index the frames

29. def new_frame(self):
30. if not os.path.exists(’frames’):
31. os.mkdir(’frames’)

..creates a folder for the frames

32. self.savefig(f’frames/{self.frame_index:04d}.png’)

..............saves the current state of the figure

33. self.frame_index += 1

Auto-creating frames

Visualization using Python Benôıt CorsiniExtending the Figure class

14. def __init__(self, fps=30, *args, **kwargs):
15. super().__init__(*args, **kwargs)
16. self.__figure__()
17. self.fps = fps . adds the frames per second parameter
18. self.frame_index = 0

. an attribute to index the frames

29. def new_frame(self):
30. if not os.path.exists(’frames’):
31. os.mkdir(’frames’)

..creates a folder for the frames

32. self.savefig(f’frames/{self.frame_index:04d}.png’)

..............saves the current state of the figure

33. self.frame_index += 1

Auto-creating frames

Visualization using Python Benôıt CorsiniExtending the Figure class

14. def __init__(self, fps=30, *args, **kwargs):
15. super().__init__(*args, **kwargs)
16. self.__figure__()
17. self.fps = fps . adds the frames per second parameter
18. self.frame_index = 0 . an attribute to index the frames

29. def new_frame(self):
30. if not os.path.exists(’frames’):
31. os.mkdir(’frames’)

..creates a folder for the frames

32. self.savefig(f’frames/{self.frame_index:04d}.png’)

..............saves the current state of the figure

33. self.frame_index += 1

Auto-creating frames

Visualization using Python Benôıt CorsiniExtending the Figure class

14. def __init__(self, fps=30, *args, **kwargs):
15. super().__init__(*args, **kwargs)
16. self.__figure__()
17. self.fps = fps . adds the frames per second parameter
18. self.frame_index = 0 . an attribute to index the frames

29. def new_frame(self):
30. if not os.path.exists(’frames’):
31. os.mkdir(’frames’) ..creates a folder for the frames
32. self.savefig(f’frames/{self.frame_index:04d}.png’)

..............saves the current state of the figure

33. self.frame_index += 1

Auto-creating frames

Visualization using Python Benôıt CorsiniExtending the Figure class

14. def __init__(self, fps=30, *args, **kwargs):
15. super().__init__(*args, **kwargs)
16. self.__figure__()
17. self.fps = fps . adds the frames per second parameter
18. self.frame_index = 0 . an attribute to index the frames

29. def new_frame(self):
30. if not os.path.exists(’frames’):
31. os.mkdir(’frames’) ..creates a folder for the frames
32. self.savefig(f’frames/{self.frame_index:04d}.png’)saves the current state of the figure
33. self.frame_index += 1

Combining frames for the video

Visualization using Python Benôıt CorsiniExtending the Figure class

Finally, we need to combine all the created frames into a single video using the cv2 package.
→→→→→→→→→→→ The structure make_video strongly relies on the structure of the cv2 package, in particular the

existence of silent errors, halting the code prior to completion without raising any error.

Combining frames for the video

Visualization using Python Benôıt CorsiniExtending the Figure class

Finally, we need to combine all the created frames into a single video using the cv2 package.

→→→→→→→→→→→ The structure make_video strongly relies on the structure of the cv2 package, in particular the
existence of silent errors, halting the code prior to completion without raising any error.

Combining frames for the video

Visualization using Python Benôıt CorsiniExtending the Figure class

Finally, we need to combine all the created frames into a single video using the cv2 package.
→→→→→→→→→→→ The structure make_video strongly relies on the structure of the cv2 package, in particular the

existence of silent errors, halting the code prior to completion without raising any error.

Combining frames for the video

Visualization using Python Benôıt CorsiniExtending the Figure class

35. def make_video(self, filename=’video’):
36. frames = sorted([
37. os.path.join(’frames’, file)
38. for file in os.listdir(’frames’)
39.])

. lists the frame files in order of creation

40. height, width, _ = cv2.imread(frames[0]).shape

. finds the size of the images (to avoid silent errors)

41. video = cv2.VideoWriter(
42. filename=filename + ’.mp4’,
43. fourcc=cv2.VideoWriter_fourcc(*’mp4v’),

. the format of the video (mp4 here)

44. fps=self.fps,
45. frameSize=(width, height),
46.)
47. for frame in frames:
48. video.write(cv2.imread(frame))

. adds each individual frame to the video

49. video.release()

. saves the video

50. cv2.destroyAllWindows()

. clears the cache

Combining frames for the video

Visualization using Python Benôıt CorsiniExtending the Figure class

35. def make_video(self, filename=’video’):
36. frames = sorted([
37. os.path.join(’frames’, file)
38. for file in os.listdir(’frames’)
39.]) . lists the frame files in order of creation
40. height, width, _ = cv2.imread(frames[0]).shape

. finds the size of the images (to avoid silent errors)

41. video = cv2.VideoWriter(
42. filename=filename + ’.mp4’,
43. fourcc=cv2.VideoWriter_fourcc(*’mp4v’),

. the format of the video (mp4 here)

44. fps=self.fps,
45. frameSize=(width, height),
46.)
47. for frame in frames:
48. video.write(cv2.imread(frame))

. adds each individual frame to the video

49. video.release()

. saves the video

50. cv2.destroyAllWindows()

. clears the cache

Combining frames for the video

Visualization using Python Benôıt CorsiniExtending the Figure class

35. def make_video(self, filename=’video’):
36. frames = sorted([
37. os.path.join(’frames’, file)
38. for file in os.listdir(’frames’)
39.]) . lists the frame files in order of creation
40. height, width, _ = cv2.imread(frames[0]).shape finds the size of the images (to avoid silent errors)
41. video = cv2.VideoWriter(
42. filename=filename + ’.mp4’,
43. fourcc=cv2.VideoWriter_fourcc(*’mp4v’),

. the format of the video (mp4 here)

44. fps=self.fps,
45. frameSize=(width, height),
46.)
47. for frame in frames:
48. video.write(cv2.imread(frame))

. adds each individual frame to the video

49. video.release()

. saves the video

50. cv2.destroyAllWindows()

. clears the cache

Combining frames for the video

Visualization using Python Benôıt CorsiniExtending the Figure class

35. def make_video(self, filename=’video’):
36. frames = sorted([
37. os.path.join(’frames’, file)
38. for file in os.listdir(’frames’)
39.]) . lists the frame files in order of creation
40. height, width, _ = cv2.imread(frames[0]).shape finds the size of the images (to avoid silent errors)
41. video = cv2.VideoWriter(
42. filename=filename + ’.mp4’,
43. fourcc=cv2.VideoWriter_fourcc(*’mp4v’), . the format of the video (mp4 here)
44. fps=self.fps,
45. frameSize=(width, height),
46.)
47. for frame in frames:
48. video.write(cv2.imread(frame))

. adds each individual frame to the video

49. video.release()

. saves the video

50. cv2.destroyAllWindows()

. clears the cache

Combining frames for the video

Visualization using Python Benôıt CorsiniExtending the Figure class

35. def make_video(self, filename=’video’):
36. frames = sorted([
37. os.path.join(’frames’, file)
38. for file in os.listdir(’frames’)
39.]) . lists the frame files in order of creation
40. height, width, _ = cv2.imread(frames[0]).shape finds the size of the images (to avoid silent errors)
41. video = cv2.VideoWriter(
42. filename=filename + ’.mp4’,
43. fourcc=cv2.VideoWriter_fourcc(*’mp4v’), . the format of the video (mp4 here)
44. fps=self.fps,
45. frameSize=(width, height),
46.)
47. for frame in frames:
48. video.write(cv2.imread(frame)) . adds each individual frame to the video
49. video.release()

. saves the video

50. cv2.destroyAllWindows()

. clears the cache

Combining frames for the video

Visualization using Python Benôıt CorsiniExtending the Figure class

35. def make_video(self, filename=’video’):
36. frames = sorted([
37. os.path.join(’frames’, file)
38. for file in os.listdir(’frames’)
39.]) . lists the frame files in order of creation
40. height, width, _ = cv2.imread(frames[0]).shape finds the size of the images (to avoid silent errors)
41. video = cv2.VideoWriter(
42. filename=filename + ’.mp4’,
43. fourcc=cv2.VideoWriter_fourcc(*’mp4v’), . the format of the video (mp4 here)
44. fps=self.fps,
45. frameSize=(width, height),
46.)
47. for frame in frames:
48. video.write(cv2.imread(frame)) . adds each individual frame to the video
49. video.release() . saves the video
50. cv2.destroyAllWindows()

. clears the cache

Combining frames for the video

Visualization using Python Benôıt CorsiniExtending the Figure class

35. def make_video(self, filename=’video’):
36. frames = sorted([
37. os.path.join(’frames’, file)
38. for file in os.listdir(’frames’)
39.]) . lists the frame files in order of creation
40. height, width, _ = cv2.imread(frames[0]).shape finds the size of the images (to avoid silent errors)
41. video = cv2.VideoWriter(
42. filename=filename + ’.mp4’,
43. fourcc=cv2.VideoWriter_fourcc(*’mp4v’), . the format of the video (mp4 here)
44. fps=self.fps,
45. frameSize=(width, height),
46.)
47. for frame in frames:
48. video.write(cv2.imread(frame)) . adds each individual frame to the video
49. video.release() . saves the video
50. cv2.destroyAllWindows() . clears the cache

A first video

Visualization using Python Benôıt CorsiniExtending the Figure class

Q1: Create a 5 seconds video using the code above, also available at:
https://www.benoitcorsini.com/files/matplotlib/q0.py

A first video

Visualization using Python Benôıt CorsiniExtending the Figure class

Q1: Create a 5 seconds video using the code above, also available at:
https://www.benoitcorsini.com/files/matplotlib/q0.py

A first video

Visualization using Python Benôıt CorsiniExtending the Figure class

52. def duration_to_number(self, duration):

. transforms a duration (in seconds) into a number of frames

53. return int(duration*self.fps)
54.

55. def wait(self, duration):

. .pauses the current state of the figure for a given duration

56. for _ in range(self.duration_to_number(duration)):
57. self.new_frame()
58.

59.

60.

61. if __name__ == ’__main__’:
62. vis = Visual.square(dpi=500)
63. vis.wait(5)
64. vis.make_video()

A first video

Visualization using Python Benôıt CorsiniExtending the Figure class

52. def duration_to_number(self, duration): . transforms a duration (in seconds) into a number of frames
53. return int(duration*self.fps)
54.

55. def wait(self, duration):

. .pauses the current state of the figure for a given duration

56. for _ in range(self.duration_to_number(duration)):
57. self.new_frame()
58.

59.

60.

61. if __name__ == ’__main__’:
62. vis = Visual.square(dpi=500)
63. vis.wait(5)
64. vis.make_video()

A first video

Visualization using Python Benôıt CorsiniExtending the Figure class

52. def duration_to_number(self, duration): . transforms a duration (in seconds) into a number of frames
53. return int(duration*self.fps)
54.

55. def wait(self, duration): .pauses the current state of the figure for a given duration
56. for _ in range(self.duration_to_number(duration)):
57. self.new_frame()
58.

59.

60.

61. if __name__ == ’__main__’:
62. vis = Visual.square(dpi=500)
63. vis.wait(5)
64. vis.make_video()

Table of contents

Visualization using Python Benôıt CorsiniImporting images

•

•

•

•

•

Extending the Figure class

Importing images

Creating shapes

Creating drawings

Conclusion

Adding an image

Visualization using Python Benôıt CorsiniImporting images

A few useful functions to import and manipulate images.
• We transform an image into a matrix by calling X = plt.imread(filename).
• We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).
• We can later modify the image by calling image.set(...).

◦ For example, we make it invisible by calling image.set(visible=False).
◦ Alternatively, this can also be done by calling image.set_visible(False).

Q2: Import an image into the figure.

Adding an image

Visualization using Python Benôıt CorsiniImporting images

A few useful functions to import and manipulate images.

• We transform an image into a matrix by calling X = plt.imread(filename).
• We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).
• We can later modify the image by calling image.set(...).

◦ For example, we make it invisible by calling image.set(visible=False).
◦ Alternatively, this can also be done by calling image.set_visible(False).

Q2: Import an image into the figure.

Adding an image

Visualization using Python Benôıt CorsiniImporting images

A few useful functions to import and manipulate images.
• We transform an image into a matrix by calling X = plt.imread(filename).

• We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).
• We can later modify the image by calling image.set(...).

◦ For example, we make it invisible by calling image.set(visible=False).
◦ Alternatively, this can also be done by calling image.set_visible(False).

Q2: Import an image into the figure.

Adding an image

Visualization using Python Benôıt CorsiniImporting images

A few useful functions to import and manipulate images.
• We transform an image into a matrix by calling X = plt.imread(filename).
• We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).

• We can later modify the image by calling image.set(...).
◦ For example, we make it invisible by calling image.set(visible=False).
◦ Alternatively, this can also be done by calling image.set_visible(False).

Q2: Import an image into the figure.

Adding an image

Visualization using Python Benôıt CorsiniImporting images

A few useful functions to import and manipulate images.
• We transform an image into a matrix by calling X = plt.imread(filename).
• We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).
• We can later modify the image by calling image.set(...).

◦ For example, we make it invisible by calling image.set(visible=False).
◦ Alternatively, this can also be done by calling image.set_visible(False).

Q2: Import an image into the figure.

Adding an image

Visualization using Python Benôıt CorsiniImporting images

A few useful functions to import and manipulate images.
• We transform an image into a matrix by calling X = plt.imread(filename).
• We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).
• We can later modify the image by calling image.set(...).

◦ For example, we make it invisible by calling image.set(visible=False).

◦ Alternatively, this can also be done by calling image.set_visible(False).

Q2: Import an image into the figure.

Adding an image

Visualization using Python Benôıt CorsiniImporting images

A few useful functions to import and manipulate images.
• We transform an image into a matrix by calling X = plt.imread(filename).
• We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).
• We can later modify the image by calling image.set(...).

◦ For example, we make it invisible by calling image.set(visible=False).
◦ Alternatively, this can also be done by calling image.set_visible(False).

Q2: Import an image into the figure.

Adding an image

Visualization using Python Benôıt CorsiniImporting images

A few useful functions to import and manipulate images.
• We transform an image into a matrix by calling X = plt.imread(filename).
• We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).
• We can later modify the image by calling image.set(...).

◦ For example, we make it invisible by calling image.set(visible=False).
◦ Alternatively, this can also be done by calling image.set_visible(False).

Q2: Import an image into the figure.

Adding an image

Visualization using Python Benôıt CorsiniImporting images

59. def set_boundary(self, boundary=1):
60. self.ax.set_xlim(-boundary, boundary)
61. self.ax.set_ylim(-boundary, boundary)
62.

63. def add_image(self, filename, shift=0, *args, **kwargs):
64. X = plt.imread(filename)
65. self.image = self.ax.imshow(
66. X=X,
67. extent=(
68. shift - 1 - 2*X.shape[0]/X.shape[1],
69. shift + 1,
70. -1,
71. 1,
72.),
73. *args,
74. **kwargs,
75.)

76.

77. ...

Adding an image

Visualization using Python Benôıt CorsiniImporting images

79. if __name__ == ’__main__’:
80. vis = Visual.square(dpi=500)
81. vis.set_boundary()
82. vis.add_image(filename=’singapore.jpg’, shift=0.4)
83. vis.new_frame()

59. def set_boundary(self, boundary=1):
60. self.ax.set_xlim(-boundary, boundary)
61. self.ax.set_ylim(-boundary, boundary)
62.

63. def add_image(self, filename, shift=0, *args, **kwargs):
64. X = plt.imread(filename)
65. self.image = self.ax.imshow(
66. X=X,
67. extent=(
68. shift - 1 - 2*X.shape[0]/X.shape[1],
69. shift + 1,
70. -1,
71. 1,
72.),
73. *args,
74. **kwargs,
75.)

76.

77. ...

Making the image appear

Visualization using Python Benôıt CorsiniImporting images

A few useful functions to import and manipulate images.
• We transform an image into a matrix by calling X = plt.imread(filename).
• We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).
• We can later modify the image by calling image.set(...).

◦ For example, we make it invisible by calling image.set(visible=False).
◦ Alternatively, this can also be done by calling image.set_visible(False).

Q3: Make an image fade in.

Making the image appear

Visualization using Python Benôıt CorsiniImporting images

A few useful functions to import and manipulate images.
• We transform an image into a matrix by calling X = plt.imread(filename).
• We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).
• We can later modify the image by calling image.set(...).

◦ For example, we make it invisible by calling image.set(visible=False).
◦ Alternatively, this can also be done by calling image.set_visible(False).

Q3: Make an image fade in.

Making the image appear

Visualization using Python Benôıt CorsiniImporting images

A few useful functions to import and manipulate images.
• We transform an image into a matrix by calling X = plt.imread(filename).
• We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).
• We can later modify the image by calling image.set(...).

◦ For example, we make it invisible by calling image.set(visible=False).
◦ Alternatively, this can also be done by calling image.set_visible(False).

Q3: Make an image fade in.

Making the image appear

Visualization using Python Benôıt CorsiniImporting images

77. def image_appear(self, duration):
78. n_steps = self.duration_to_number(duration)
79. for step in range(n_steps):
80. self.image.set_alpha((1 + step)/n_steps)
81. self.new_frame()
82.

83.

84.

85. if __name__ == ’__main__’:
86. vis = Visual.square(dpi=500)
87. vis.set_boundary()
88. vis.add_image(filename=’singapore.jpg’, shift=0.4)
89. vis.image.set_alpha(0)
90. vis.new_frame()
91. vis.image_appear(0.1)

Making the image appear

Visualization using Python Benôıt CorsiniImporting images

77. def image_appear(self, duration):
78. n_steps = self.duration_to_number(duration)
79. for step in range(n_steps):
80. self.image.set_alpha((1 + step)/n_steps)
81. self.new_frame()
82.

83.

84.

85. if __name__ == ’__main__’:
86. vis = Visual.square(dpi=500)
87. vis.set_boundary()
88. vis.add_image(filename=’singapore.jpg’, shift=0.4)
89. vis.image.set_alpha(0)
90. vis.new_frame()
91. vis.image_appear(0.1)

Table of contents

Visualization using Python Benôıt CorsiniCreating shapes

•

•

•

•

•

Extending the Figure class

Importing images

Creating shapes

Creating drawings

Conclusion

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib are handled by subclasses of matplotlib.patches:
• Circle, Rectangle, Polygon, etc, are some of the classes, each with its own inputs.
• patch = Circle((0, 0), ...) creates a circle patch centered at the origin.
• ax.add_patch(patch) adds the patch to the figure.
• patch = ax.add_patch(Circle((0, 0), ...)) is the same as the previous two steps.
• patch.set(...) allows to later modify the patch.

Q4: Create this image.

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib are handled by subclasses of matplotlib.patches:

• Circle, Rectangle, Polygon, etc, are some of the classes, each with its own inputs.
• patch = Circle((0, 0), ...) creates a circle patch centered at the origin.
• ax.add_patch(patch) adds the patch to the figure.
• patch = ax.add_patch(Circle((0, 0), ...)) is the same as the previous two steps.
• patch.set(...) allows to later modify the patch.

Q4: Create this image.

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib are handled by subclasses of matplotlib.patches:
• Circle, Rectangle, Polygon, etc, are some of the classes, each with its own inputs.

• patch = Circle((0, 0), ...) creates a circle patch centered at the origin.
• ax.add_patch(patch) adds the patch to the figure.
• patch = ax.add_patch(Circle((0, 0), ...)) is the same as the previous two steps.
• patch.set(...) allows to later modify the patch.

Q4: Create this image.

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib are handled by subclasses of matplotlib.patches:
• Circle, Rectangle, Polygon, etc, are some of the classes, each with its own inputs.
• patch = Circle((0, 0), ...) creates a circle patch centered at the origin.

• ax.add_patch(patch) adds the patch to the figure.
• patch = ax.add_patch(Circle((0, 0), ...)) is the same as the previous two steps.
• patch.set(...) allows to later modify the patch.

Q4: Create this image.

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib are handled by subclasses of matplotlib.patches:
• Circle, Rectangle, Polygon, etc, are some of the classes, each with its own inputs.
• patch = Circle((0, 0), ...) creates a circle patch centered at the origin.
• ax.add_patch(patch) adds the patch to the figure.

• patch = ax.add_patch(Circle((0, 0), ...)) is the same as the previous two steps.
• patch.set(...) allows to later modify the patch.

Q4: Create this image.

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib are handled by subclasses of matplotlib.patches:
• Circle, Rectangle, Polygon, etc, are some of the classes, each with its own inputs.
• patch = Circle((0, 0), ...) creates a circle patch centered at the origin.
• ax.add_patch(patch) adds the patch to the figure.
• patch = ax.add_patch(Circle((0, 0), ...)) is the same as the previous two steps.

• patch.set(...) allows to later modify the patch.

Q4: Create this image.

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib are handled by subclasses of matplotlib.patches:
• Circle, Rectangle, Polygon, etc, are some of the classes, each with its own inputs.
• patch = Circle((0, 0), ...) creates a circle patch centered at the origin.
• ax.add_patch(patch) adds the patch to the figure.
• patch = ax.add_patch(Circle((0, 0), ...)) is the same as the previous two steps.
• patch.set(...) allows to later modify the patch.

Q4: Create this image.

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib are handled by subclasses of matplotlib.patches:
• Circle, Rectangle, Polygon, etc, are some of the classes, each with its own inputs.
• patch = Circle((0, 0), ...) creates a circle patch centered at the origin.
• ax.add_patch(patch) adds the patch to the figure.
• patch = ax.add_patch(Circle((0, 0), ...)) is the same as the previous two steps.
• patch.set(...) allows to later modify the patch.

Q4: Create this image.

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib:
• Circle, Rectangle, Polygon, etc
• patch = Circle((0, 0), ...)
• ax.add_patch(patch)
• patch = ax.add_patch(Circle((0, 0), ...))
• patch.set(...)

Q4: Create this image.

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib:
• Circle, Rectangle, Polygon, etc
• patch = Circle((0, 0), ...)
• ax.add_patch(patch)
• patch = ax.add_patch(Circle((0, 0), ...))
• patch.set(...)

Q4: Create this image.

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib:
• Circle, Rectangle, Polygon, etc
• patch = Circle((0, 0), ...)
• ax.add_patch(patch)
• patch = ax.add_patch(Circle((0, 0), ...))
• patch.set(...)

Q4: Create this image.

→→→→→→→→→→→ AI solutions (AI-know, ChatGPT, Gemini)

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib:
• Circle, Rectangle, Polygon, etc
• patch = Circle((0, 0), ...)
• ax.add_patch(patch)
• patch = ax.add_patch(Circle((0, 0), ...))
• patch.set(...)

Q4: Create this image.

→→→→→→→→→→→ AI solutions (AI-know, ChatGPT, Gemini)

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib:
• Circle, Rectangle, Polygon, etc
• patch = Circle((0, 0), ...)
• ax.add_patch(patch)
• patch = ax.add_patch(Circle((0, 0), ...))
• patch.set(...)

Q4: Create this image.

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

85. if __name__ == ’__main__’:
86. vis = Visual.square(dpi=500)
87. vis.set_boundary(1.1)
88. vis.ax.add_patch(Rectangle(
89. xy=(-1, -1),
90. width=2,
91. height=2,
92. edgecolor=’darkgreen’,
93. facecolor=’forestgreen’,
94. linewidth=4,
95. capstyle=’round’,
96. joinstyle=’round’,
97.))

98.

99. ...

Shapes in matplotlib

Visualization using Python Benôıt CorsiniCreating shapes

98. vis.ax.add_patch(Circle(
99. xy=(0, 0),

100. radius=0.5,
101. ec=’darkgoldenrod’,
102. fc=’gold’,
103. lw=2,
104.))
105. vis.ax.add_patch(Wedge(
106. center=(0, 0),
107. theta1=45,
108. theta2=135,
109. r=1,
110. color=’crimson’,
111. lw=0,
112. alpha=0.5,
113.))
114. vis.new_frame()

85. if __name__ == ’__main__’:
86. vis = Visual.square(dpi=500)
87. vis.set_boundary(1.1)
88. vis.ax.add_patch(Rectangle(
89. xy=(-1, -1),
90. width=2,
91. height=2,
92. edgecolor=’darkgreen’,
93. facecolor=’forestgreen’,
94. linewidth=4,
95. capstyle=’round’,
96. joinstyle=’round’,
97.))

98.

99. ...

3D effect

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib:
• Circle, Rectangle, Polygon, etc
• patch = Circle((0, 0), ...)
• ax.add_patch(patch)
• patch = ax.add_patch(Circle((0, 0), ...))
• patch.set(...)

Q5: Create a sphere.

3D effect

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib:
• Circle, Rectangle, Polygon, etc
• patch = Circle((0, 0), ...)
• ax.add_patch(patch)
• patch = ax.add_patch(Circle((0, 0), ...))
• patch.set(...)

Q5: Create a sphere.

3D effect

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib:
• Circle, Rectangle, Polygon, etc
• patch = Circle((0, 0), ...)
• ax.add_patch(patch)
• patch = ax.add_patch(Circle((0, 0), ...))
• patch.set(...)

Q5: Create a sphere.

3D effect

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib:
• Circle, Rectangle, Polygon, etc
• patch = Circle((0, 0), ...)
• ax.add_patch(patch)
• patch = ax.add_patch(Circle((0, 0), ...))
• patch.set(...)

Q5: Create a sphere.

3D effect

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib:
• Circle, Rectangle, Polygon, etc
• patch = Circle((0, 0), ...)
• ax.add_patch(patch)
• patch = ax.add_patch(Circle((0, 0), ...))
• patch.set(...)

Q5: Create a sphere.

→→→→→→→→→→→ AI solutions (AI-know, ChatGPT, Gemini)

3D effect

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib:
• Circle, Rectangle, Polygon, etc
• patch = Circle((0, 0), ...)
• ax.add_patch(patch)
• patch = ax.add_patch(Circle((0, 0), ...))
• patch.set(...)

Q5: Create a sphere.

→→→→→→→→→→→ AI solutions (AI-know, ChatGPT, Gemini)

3D effect

Visualization using Python Benôıt CorsiniCreating shapes

Shapes in matplotlib:
• Circle, Rectangle, Polygon, etc
• patch = Circle((0, 0), ...)
• ax.add_patch(patch)
• patch = ax.add_patch(Circle((0, 0), ...))
• patch.set(...)

Q5: Create a sphere.

3D effect

Visualization using Python Benôıt CorsiniCreating shapes

83. def add_circle(self, xy=(0, 0), radius=1, *args, **kwargs):
84. return self.ax.add_patch(Circle(
85. xy=xy,
86. radius=radius,
87. *args,
88. **kwargs,
89.))
90.

91.

92.

93. if __name__ == ’__main__’:
94. vis = Visual.square(dpi=500)
95. vis.set_boundary(2)
96. sphere = vis.add_circle(color=’darkgreen’)
97. vis.new_frame()

98.

99. ...

3D effect

Visualization using Python Benôıt CorsiniCreating shapes

83. def add_circle(self, xy=(0, 0), radius=1, *args, **kwargs):
84. return self.ax.add_patch(Circle(
85. xy=xy,
86. radius=radius,
87. *args,
88. **kwargs,
89.))
90.

91.

92.

93. if __name__ == ’__main__’:
94. vis = Visual.square(dpi=500)
95. vis.set_boundary(2)
96. sphere = vis.add_circle(color=’darkgreen’)
97. vis.new_frame()

98.

99. ...

3D effect

Visualization using Python Benôıt CorsiniCreating shapes

98. side_shift = 0.1
99. light = vis.add_circle(

100. xy=(-side_shift, side_shift),
101. color=’forestgreen’,
102.)
103. vis.new_frame()
104. light.set_clip_path(sphere)
105. vis.new_frame()
106. sphere.set_lw(0)
107. light.set_lw(0)
108. vis.new_frame()

83. def add_circle(self, xy=(0, 0), radius=1, *args, **kwargs):
84. return self.ax.add_patch(Circle(
85. xy=xy,
86. radius=radius,
87. *args,
88. **kwargs,
89.))
90.

91.

92.

93. if __name__ == ’__main__’:
94. vis = Visual.square(dpi=500)
95. vis.set_boundary(2)
96. sphere = vis.add_circle(color=’darkgreen’)
97. vis.new_frame()

98.

99. ...

3D effect

Visualization using Python Benôıt CorsiniCreating shapes

98. side_shift = 0.1
99. light = vis.add_circle(

100. xy=(-side_shift, side_shift),
101. color=’forestgreen’,
102.)
103. vis.new_frame()
104. light.set_clip_path(sphere)
105. vis.new_frame()
106. sphere.set_lw(0)
107. light.set_lw(0)
108. vis.new_frame()

83. def add_circle(self, xy=(0, 0), radius=1, *args, **kwargs):
84. return self.ax.add_patch(Circle(
85. xy=xy,
86. radius=radius,
87. *args,
88. **kwargs,
89.))
90.

91.

92.

93. if __name__ == ’__main__’:
94. vis = Visual.square(dpi=500)
95. vis.set_boundary(2)
96. sphere = vis.add_circle(color=’darkgreen’)
97. vis.new_frame()

98.

99. ...

3D effect

Visualization using Python Benôıt CorsiniCreating shapes

109. shade = vis.add_circle(
110. xy=(0.5, -0.5),
111. color=’forestgreen’,
112. lw=0,
113.)
114. vis.new_frame()
115. shade.set_zorder(0)
116. vis.new_frame()
117. shade.set_alpha(0.2)
118. vis.new_frame()

83. def add_circle(self, xy=(0, 0), radius=1, *args, **kwargs):
84. return self.ax.add_patch(Circle(
85. xy=xy,
86. radius=radius,
87. *args,
88. **kwargs,
89.))
90.

91.

92.

93. if __name__ == ’__main__’:
94. vis = Visual.square(dpi=500)
95. vis.set_boundary(2)
96. sphere = vis.add_circle(color=’darkgreen’)
97. vis.new_frame()

98.

99. ...

3D effect

Visualization using Python Benôıt CorsiniCreating shapes

109. shade = vis.add_circle(
110. xy=(0.5, -0.5),
111. color=’forestgreen’,
112. lw=0,
113.)
114. vis.new_frame()
115. shade.set_zorder(0)
116. vis.new_frame()
117. shade.set_alpha(0.2)
118. vis.new_frame()

83. def add_circle(self, xy=(0, 0), radius=1, *args, **kwargs):
84. return self.ax.add_patch(Circle(
85. xy=xy,
86. radius=radius,
87. *args,
88. **kwargs,
89.))
90.

91.

92.

93. if __name__ == ’__main__’:
94. vis = Visual.square(dpi=500)
95. vis.set_boundary(2)
96. sphere = vis.add_circle(color=’darkgreen’)
97. vis.new_frame()

98.

99. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

Since spheres are created using three circles, it is easier to create methods to handle them together.
• We implement new_sphere, which creates and returns a dictionary named sphere, containing

the three circles as well as other parameters (their position, radius, etc).
• We implement update_sphere, which directly applies to the dictionary of a sphere and should

thus be called using update_sphere(**sphere).

The new_sphere and update_sphere methods are already in the solution of Q5:
https://www.benoitcorsini.com/files/matplotlib/q5.py

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

Since spheres are created using three circles, it is easier to create methods to handle them together.

• We implement new_sphere, which creates and returns a dictionary named sphere, containing
the three circles as well as other parameters (their position, radius, etc).

• We implement update_sphere, which directly applies to the dictionary of a sphere and should
thus be called using update_sphere(**sphere).

The new_sphere and update_sphere methods are already in the solution of Q5:
https://www.benoitcorsini.com/files/matplotlib/q5.py

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

Since spheres are created using three circles, it is easier to create methods to handle them together.
• We implement new_sphere, which creates and returns a dictionary named sphere, containing

the three circles as well as other parameters (their position, radius, etc).

• We implement update_sphere, which directly applies to the dictionary of a sphere and should
thus be called using update_sphere(**sphere).

The new_sphere and update_sphere methods are already in the solution of Q5:
https://www.benoitcorsini.com/files/matplotlib/q5.py

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

Since spheres are created using three circles, it is easier to create methods to handle them together.
• We implement new_sphere, which creates and returns a dictionary named sphere, containing

the three circles as well as other parameters (their position, radius, etc).
• We implement update_sphere, which directly applies to the dictionary of a sphere and should

thus be called using update_sphere(**sphere).

The new_sphere and update_sphere methods are already in the solution of Q5:
https://www.benoitcorsini.com/files/matplotlib/q5.py

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

Since spheres are created using three circles, it is easier to create methods to handle them together.
• We implement new_sphere, which creates and returns a dictionary named sphere, containing

the three circles as well as other parameters (their position, radius, etc).
• We implement update_sphere, which directly applies to the dictionary of a sphere and should

thus be called using update_sphere(**sphere).

The new_sphere and update_sphere methods are already in the solution of Q5:
https://www.benoitcorsini.com/files/matplotlib/q5.py

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

91. def new_sphere(self,
92. color=’forestgreen’,

. the front color of the sphere

93. dark=’darkgreen’,

. the color of the side shade of the sphere

94. alpha=0.2,

. the opacity of the floor shade of the sphere

95. **kwargs,

. other possible arguments of the sphere, as found in update_sphere

96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0)

. each key leads to a circle patch

99. for key in [’main’, ’light’, ’shade’]

. the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs)

. adds the input of the function as items of the dictionnary sphere

102. sphere[’main’].set_color(dark)

. the main sphere is the background and darker one

103. sphere[’shade’].set(alpha=alpha, zorder=0)

. the shade sphere is the one on the floor

104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’,

. the color of the side shade of the sphere

94. alpha=0.2,

. the opacity of the floor shade of the sphere

95. **kwargs,

. other possible arguments of the sphere, as found in update_sphere

96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0)

. each key leads to a circle patch

99. for key in [’main’, ’light’, ’shade’]

. the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs)

. adds the input of the function as items of the dictionnary sphere

102. sphere[’main’].set_color(dark)

. the main sphere is the background and darker one

103. sphere[’shade’].set(alpha=alpha, zorder=0)

. the shade sphere is the one on the floor

104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2,

. the opacity of the floor shade of the sphere

95. **kwargs,

. other possible arguments of the sphere, as found in update_sphere

96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0)

. each key leads to a circle patch

99. for key in [’main’, ’light’, ’shade’]

. the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs)

. adds the input of the function as items of the dictionnary sphere

102. sphere[’main’].set_color(dark)

. the main sphere is the background and darker one

103. sphere[’shade’].set(alpha=alpha, zorder=0)

. the shade sphere is the one on the floor

104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs,

. other possible arguments of the sphere, as found in update_sphere

96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0)

. each key leads to a circle patch

99. for key in [’main’, ’light’, ’shade’]

. the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs)

. adds the input of the function as items of the dictionnary sphere

102. sphere[’main’].set_color(dark)

. the main sphere is the background and darker one

103. sphere[’shade’].set(alpha=alpha, zorder=0)

. the shade sphere is the one on the floor

104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0)

. each key leads to a circle patch

99. for key in [’main’, ’light’, ’shade’]

. the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs)

. adds the input of the function as items of the dictionnary sphere

102. sphere[’main’].set_color(dark)

. the main sphere is the background and darker one

103. sphere[’shade’].set(alpha=alpha, zorder=0)

. the shade sphere is the one on the floor

104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’]

. the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs)

. adds the input of the function as items of the dictionnary sphere

102. sphere[’main’].set_color(dark)

. the main sphere is the background and darker one

103. sphere[’shade’].set(alpha=alpha, zorder=0)

. the shade sphere is the one on the floor

104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs)

. adds the input of the function as items of the dictionnary sphere

102. sphere[’main’].set_color(dark)

. the main sphere is the background and darker one

103. sphere[’shade’].set(alpha=alpha, zorder=0)

. the shade sphere is the one on the floor

104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark)

. the main sphere is the background and darker one

103. sphere[’shade’].set(alpha=alpha, zorder=0)

. the shade sphere is the one on the floor

104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0)

. the shade sphere is the one on the floor

104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0) . the shade sphere is the one on the floor
104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

106. def update_sphere(self, main, light, shade,

. the three circles of the sphere

107. xy=(0, 0),

. the planar position of the sphere

108. radius=1,

. the radius of the sphere

109. height=0,

. the height of the sphere

110. shift=(0.4, -0.8),

. the directional shift of the shade of the sphere

111. side=0.15,

. the amount of shift used to create the side shade

112. shadow=0.5,

. .the amount of shift used to create the floor shade

113.):
114. xy = np.array(xy)
115. shift = np.array(shift)
116. for circle in [main, light, shade]:
117. circle.set_radius(radius)
118. main.set_center(xy + np.array([0, height]))

. main is vertically shifted by height from xy

119. light.set_center(xy - radius*side*shift + np.array([0, height]))

. light is shifted from main using shift

120. shade_shift = height*shadow + radius/np.sum(shift**2)**0.5
121. shade.set_center(xy + shade_shift*shift)

. shade is shifted from xy using shift

122. light.set_clip_path(main)

. light is clipped by main
91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0) . the shade sphere is the one on the floor
104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

106. def update_sphere(self, main, light, shade, . the three circles of the sphere
107. xy=(0, 0),

. the planar position of the sphere

108. radius=1,

. the radius of the sphere

109. height=0,

. the height of the sphere

110. shift=(0.4, -0.8),

. the directional shift of the shade of the sphere

111. side=0.15,

. the amount of shift used to create the side shade

112. shadow=0.5,

. .the amount of shift used to create the floor shade

113.):
114. xy = np.array(xy)
115. shift = np.array(shift)
116. for circle in [main, light, shade]:
117. circle.set_radius(radius)
118. main.set_center(xy + np.array([0, height]))

. main is vertically shifted by height from xy

119. light.set_center(xy - radius*side*shift + np.array([0, height]))

. light is shifted from main using shift

120. shade_shift = height*shadow + radius/np.sum(shift**2)**0.5
121. shade.set_center(xy + shade_shift*shift)

. shade is shifted from xy using shift

122. light.set_clip_path(main)

. light is clipped by main
91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0) . the shade sphere is the one on the floor
104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

106. def update_sphere(self, main, light, shade, . the three circles of the sphere
107. xy=(0, 0), . the planar position of the sphere
108. radius=1,

. the radius of the sphere

109. height=0,

. the height of the sphere

110. shift=(0.4, -0.8),

. the directional shift of the shade of the sphere

111. side=0.15,

. the amount of shift used to create the side shade

112. shadow=0.5,

. .the amount of shift used to create the floor shade

113.):
114. xy = np.array(xy)
115. shift = np.array(shift)
116. for circle in [main, light, shade]:
117. circle.set_radius(radius)
118. main.set_center(xy + np.array([0, height]))

. main is vertically shifted by height from xy

119. light.set_center(xy - radius*side*shift + np.array([0, height]))

. light is shifted from main using shift

120. shade_shift = height*shadow + radius/np.sum(shift**2)**0.5
121. shade.set_center(xy + shade_shift*shift)

. shade is shifted from xy using shift

122. light.set_clip_path(main)

. light is clipped by main
91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0) . the shade sphere is the one on the floor
104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

106. def update_sphere(self, main, light, shade, . the three circles of the sphere
107. xy=(0, 0), . the planar position of the sphere
108. radius=1, . the radius of the sphere
109. height=0,

. the height of the sphere

110. shift=(0.4, -0.8),

. the directional shift of the shade of the sphere

111. side=0.15,

. the amount of shift used to create the side shade

112. shadow=0.5,

. .the amount of shift used to create the floor shade

113.):
114. xy = np.array(xy)
115. shift = np.array(shift)
116. for circle in [main, light, shade]:
117. circle.set_radius(radius)
118. main.set_center(xy + np.array([0, height]))

. main is vertically shifted by height from xy

119. light.set_center(xy - radius*side*shift + np.array([0, height]))

. light is shifted from main using shift

120. shade_shift = height*shadow + radius/np.sum(shift**2)**0.5
121. shade.set_center(xy + shade_shift*shift)

. shade is shifted from xy using shift

122. light.set_clip_path(main)

. light is clipped by main
91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0) . the shade sphere is the one on the floor
104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

106. def update_sphere(self, main, light, shade, . the three circles of the sphere
107. xy=(0, 0), . the planar position of the sphere
108. radius=1, . the radius of the sphere
109. height=0, . the height of the sphere
110. shift=(0.4, -0.8),

. the directional shift of the shade of the sphere

111. side=0.15,

. the amount of shift used to create the side shade

112. shadow=0.5,

. .the amount of shift used to create the floor shade

113.):
114. xy = np.array(xy)
115. shift = np.array(shift)
116. for circle in [main, light, shade]:
117. circle.set_radius(radius)
118. main.set_center(xy + np.array([0, height]))

. main is vertically shifted by height from xy

119. light.set_center(xy - radius*side*shift + np.array([0, height]))

. light is shifted from main using shift

120. shade_shift = height*shadow + radius/np.sum(shift**2)**0.5
121. shade.set_center(xy + shade_shift*shift)

. shade is shifted from xy using shift

122. light.set_clip_path(main)

. light is clipped by main
91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0) . the shade sphere is the one on the floor
104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

106. def update_sphere(self, main, light, shade, . the three circles of the sphere
107. xy=(0, 0), . the planar position of the sphere
108. radius=1, . the radius of the sphere
109. height=0, . the height of the sphere
110. shift=(0.4, -0.8), . the directional shift of the shade of the sphere
111. side=0.15,

. the amount of shift used to create the side shade

112. shadow=0.5,

. .the amount of shift used to create the floor shade

113.):
114. xy = np.array(xy)
115. shift = np.array(shift)
116. for circle in [main, light, shade]:
117. circle.set_radius(radius)
118. main.set_center(xy + np.array([0, height]))

. main is vertically shifted by height from xy

119. light.set_center(xy - radius*side*shift + np.array([0, height]))

. light is shifted from main using shift

120. shade_shift = height*shadow + radius/np.sum(shift**2)**0.5
121. shade.set_center(xy + shade_shift*shift)

. shade is shifted from xy using shift

122. light.set_clip_path(main)

. light is clipped by main
91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0) . the shade sphere is the one on the floor
104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

106. def update_sphere(self, main, light, shade, . the three circles of the sphere
107. xy=(0, 0), . the planar position of the sphere
108. radius=1, . the radius of the sphere
109. height=0, . the height of the sphere
110. shift=(0.4, -0.8), . the directional shift of the shade of the sphere
111. side=0.15, . the amount of shift used to create the side shade
112. shadow=0.5,

. .the amount of shift used to create the floor shade

113.):
114. xy = np.array(xy)
115. shift = np.array(shift)
116. for circle in [main, light, shade]:
117. circle.set_radius(radius)
118. main.set_center(xy + np.array([0, height]))

. main is vertically shifted by height from xy

119. light.set_center(xy - radius*side*shift + np.array([0, height]))

. light is shifted from main using shift

120. shade_shift = height*shadow + radius/np.sum(shift**2)**0.5
121. shade.set_center(xy + shade_shift*shift)

. shade is shifted from xy using shift

122. light.set_clip_path(main)

. light is clipped by main
91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0) . the shade sphere is the one on the floor
104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

106. def update_sphere(self, main, light, shade, . the three circles of the sphere
107. xy=(0, 0), . the planar position of the sphere
108. radius=1, . the radius of the sphere
109. height=0, . the height of the sphere
110. shift=(0.4, -0.8), . the directional shift of the shade of the sphere
111. side=0.15, . the amount of shift used to create the side shade
112. shadow=0.5, .the amount of shift used to create the floor shade
113.):
114. xy = np.array(xy)
115. shift = np.array(shift)
116. for circle in [main, light, shade]:
117. circle.set_radius(radius)
118. main.set_center(xy + np.array([0, height]))

. main is vertically shifted by height from xy

119. light.set_center(xy - radius*side*shift + np.array([0, height]))

. light is shifted from main using shift

120. shade_shift = height*shadow + radius/np.sum(shift**2)**0.5
121. shade.set_center(xy + shade_shift*shift)

. shade is shifted from xy using shift

122. light.set_clip_path(main)

. light is clipped by main
91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0) . the shade sphere is the one on the floor
104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

106. def update_sphere(self, main, light, shade, . the three circles of the sphere
107. xy=(0, 0), . the planar position of the sphere
108. radius=1, . the radius of the sphere
109. height=0, . the height of the sphere
110. shift=(0.4, -0.8), . the directional shift of the shade of the sphere
111. side=0.15, . the amount of shift used to create the side shade
112. shadow=0.5, .the amount of shift used to create the floor shade
113.):
114. xy = np.array(xy)
115. shift = np.array(shift)
116. for circle in [main, light, shade]:
117. circle.set_radius(radius)
118. main.set_center(xy + np.array([0, height])) . main is vertically shifted by height from xy
119. light.set_center(xy - radius*side*shift + np.array([0, height]))

. light is shifted from main using shift

120. shade_shift = height*shadow + radius/np.sum(shift**2)**0.5
121. shade.set_center(xy + shade_shift*shift)

. shade is shifted from xy using shift

122. light.set_clip_path(main)

. light is clipped by main
91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0) . the shade sphere is the one on the floor
104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

106. def update_sphere(self, main, light, shade, . the three circles of the sphere
107. xy=(0, 0), . the planar position of the sphere
108. radius=1, . the radius of the sphere
109. height=0, . the height of the sphere
110. shift=(0.4, -0.8), . the directional shift of the shade of the sphere
111. side=0.15, . the amount of shift used to create the side shade
112. shadow=0.5, .the amount of shift used to create the floor shade
113.):
114. xy = np.array(xy)
115. shift = np.array(shift)
116. for circle in [main, light, shade]:
117. circle.set_radius(radius)
118. main.set_center(xy + np.array([0, height])) . main is vertically shifted by height from xy
119. light.set_center(xy - radius*side*shift + np.array([0, height])) light is shifted from main using shift
120. shade_shift = height*shadow + radius/np.sum(shift**2)**0.5
121. shade.set_center(xy + shade_shift*shift)

. shade is shifted from xy using shift

122. light.set_clip_path(main)

. light is clipped by main
91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0) . the shade sphere is the one on the floor
104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

106. def update_sphere(self, main, light, shade, . the three circles of the sphere
107. xy=(0, 0), . the planar position of the sphere
108. radius=1, . the radius of the sphere
109. height=0, . the height of the sphere
110. shift=(0.4, -0.8), . the directional shift of the shade of the sphere
111. side=0.15, . the amount of shift used to create the side shade
112. shadow=0.5, .the amount of shift used to create the floor shade
113.):
114. xy = np.array(xy)
115. shift = np.array(shift)
116. for circle in [main, light, shade]:
117. circle.set_radius(radius)
118. main.set_center(xy + np.array([0, height])) . main is vertically shifted by height from xy
119. light.set_center(xy - radius*side*shift + np.array([0, height])) light is shifted from main using shift
120. shade_shift = height*shadow + radius/np.sum(shift**2)**0.5
121. shade.set_center(xy + shade_shift*shift) . shade is shifted from xy using shift
122. light.set_clip_path(main)

. light is clipped by main
91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0) . the shade sphere is the one on the floor
104. return sphere

105.

106. ...

Creating a sphere

Visualization using Python Benôıt CorsiniCreating shapes

106. def update_sphere(self, main, light, shade, . the three circles of the sphere
107. xy=(0, 0), . the planar position of the sphere
108. radius=1, . the radius of the sphere
109. height=0, . the height of the sphere
110. shift=(0.4, -0.8), . the directional shift of the shade of the sphere
111. side=0.15, . the amount of shift used to create the side shade
112. shadow=0.5, .the amount of shift used to create the floor shade
113.):
114. xy = np.array(xy)
115. shift = np.array(shift)
116. for circle in [main, light, shade]:
117. circle.set_radius(radius)
118. main.set_center(xy + np.array([0, height])) . main is vertically shifted by height from xy
119. light.set_center(xy - radius*side*shift + np.array([0, height])) light is shifted from main using shift
120. shade_shift = height*shadow + radius/np.sum(shift**2)**0.5
121. shade.set_center(xy + shade_shift*shift) . shade is shifted from xy using shift
122. light.set_clip_path(main) . light is clipped by main

91. def new_sphere(self,
92. color=’forestgreen’, . the front color of the sphere
93. dark=’darkgreen’, . the color of the side shade of the sphere
94. alpha=0.2, . the opacity of the floor shade of the sphere
95. **kwargs, . other possible arguments of the sphere, as found in update_sphere
96.):
97. sphere = {
98. key : vis.add_circle(color=color, lw=0) . each key leads to a circle patch
99. for key in [’main’, ’light’, ’shade’] the sphere is composed of three circles: main, light, and shade

100. }
101. sphere.update(**kwargs) . adds the input of the function as items of the dictionnary sphere
102. sphere[’main’].set_color(dark) . the main sphere is the background and darker one
103. sphere[’shade’].set(alpha=alpha, zorder=0) . the shade sphere is the one on the floor
104. return sphere

105.

106. ...

Creating spheres

Visualization using Python Benôıt CorsiniCreating shapes

Q6: Create a custom number of spheres.

Creating spheres

Visualization using Python Benôıt CorsiniCreating shapes

Q6: Create a custom number of spheres.

Creating spheres

Visualization using Python Benôıt CorsiniCreating shapes

Q6: Create a custom number of spheres.

Creating spheres

Visualization using Python Benôıt CorsiniCreating shapes

124. def make_spheres(self, number, ratio=0.5, *args, **kwargs):
125. self.spheres = []
126. for i in range(number):
127. for j in range(number):
128. xy = (2*i + 1)/number - 1, 1 - (2*j + 1)/number
129. sphere = self.new_sphere(
130. radius=ratio/number,
131. xy=xy,
132. *args,
133. **kwargs,
134.)
135. self.update_sphere(**sphere)
136. self.spheres.append(sphere)

137.

138. ...

Creating spheres

Visualization using Python Benôıt CorsiniCreating shapes

140. if __name__ == ’__main__’:
141. vis = Visual.square(dpi=500)
142. vis.set_boundary()
143. for n in range(1, 5):
144. vis.make_spheres(n)
145. vis.new_frame()
146. for sphere in vis.spheres:
147. sphere[’main’].set_visible(False)
148. sphere[’light’].set_visible(False)
149. sphere[’shade’].set_visible(False)

124. def make_spheres(self, number, ratio=0.5, *args, **kwargs):
125. self.spheres = []
126. for i in range(number):
127. for j in range(number):
128. xy = (2*i + 1)/number - 1, 1 - (2*j + 1)/number
129. sphere = self.new_sphere(
130. radius=ratio/number,
131. xy=xy,
132. *args,
133. **kwargs,
134.)
135. self.update_sphere(**sphere)
136. self.spheres.append(sphere)

137.

138. ...

Dropping spheres

Visualization using Python Benôıt CorsiniCreating shapes

Q7: Create dropping spheres.

Dropping spheres

Visualization using Python Benôıt CorsiniCreating shapes

Q7: Create dropping spheres.

Dropping spheres

Visualization using Python Benôıt CorsiniCreating shapes

Q7: Create dropping spheres.

Dropping spheres

Visualization using Python Benôıt CorsiniCreating shapes

138. def get_height(self,
139. index=0,
140. height_spread=1,
141. height_period=0.5,
142. height_drop=0.25,
143. max_height=4.5,
144.):
145. if not hasattr(self, ’height_shifts’):
146. self.height_shifts = np.random.rand(len(self.spheres))
147. shifts = index - self.fps*height_spread*self.height_shifts
148. shifts = shifts*(shifts >= 0)
149. flucts = np.abs(np.cos(np.pi*shifts/self.fps/height_period))
150. heights = np.exp(-shifts/self.fps/height_drop)
151. return max_height*flucts*heights

152.

153. ...

Dropping spheres

Visualization using Python Benôıt CorsiniCreating shapes

153. def drop_spheres(self, duration, *args, **kwargs):
154. for index in range(self.duration_to_number(duration)):
155. heights = self.get_height(index, *args, **kwargs)
156. for sphere, height in zip(self.spheres, heights):
157. self.update_sphere(height=height, **sphere)
158. self.new_frame()
159.

160.

161.

162. if __name__ == ’__main__’:
163. vis = Visual.square(dpi=500)
164. vis.set_boundary()
165. vis.make_spheres(2)
166. vis.drop_spheres(0.5,
167. height_spread=0.2,
168. height_period=0.1,
169. height_drop=0.05,
170.)

138. def get_height(self,
139. index=0,
140. height_spread=1,
141. height_period=0.5,
142. height_drop=0.25,
143. max_height=4.5,
144.):
145. if not hasattr(self, ’height_shifts’):
146. self.height_shifts = np.random.rand(len(self.spheres))
147. shifts = index - self.fps*height_spread*self.height_shifts
148. shifts = shifts*(shifts >= 0)
149. flucts = np.abs(np.cos(np.pi*shifts/self.fps/height_period))
150. heights = np.exp(-shifts/self.fps/height_drop)
151. return max_height*flucts*heights

152.

153. ...

Schrinking spheres

Visualization using Python Benôıt CorsiniCreating shapes

Q8: Create schrinking spheres.

Schrinking spheres

Visualization using Python Benôıt CorsiniCreating shapes

Q8: Create schrinking spheres.

Schrinking spheres

Visualization using Python Benôıt CorsiniCreating shapes

Q8: Create schrinking spheres.

Schrinking spheres

Visualization using Python Benôıt CorsiniCreating shapes

160. def schrink_spheres(self, duration):
161. n_steps = self.duration_to_number(duration)
162. radius = self.spheres[0][’main’].get_radius()
163. for index in range(n_steps):
164. ratio = 1 - (1 + index)/n_steps
165. for sphere in self.spheres:
166. sphere[’radius’] = ratio*radius
167. self.update_sphere(**sphere)
168. self.new_frame()
169.

170.

171.

172. if __name__ == ’__main__’:
173. vis = Visual.square(dpi=500)
174. vis.set_boundary()
175. vis.make_spheres(5)
176. vis.schrink_spheres(0.5)

Table of contents

Visualization using Python Benôıt CorsiniCreating drawings

•

•

•

•

•

Extending the Figure class

Importing images

Creating shapes

Creating drawings

Conclusion

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

The Path class is useful in creating curved shapes.
• path = Path([(0, 0), (1, 1)]) creates a line from (0, 0) to (1, 1).
• path = TextPath((0, 0), ’ABC’) creates a curve drawing ’ABC’.
• patch = ax.add_patch(PathPatch(path, ...)) represents the curve.

Q9: Create these two images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

The Path class is useful in creating curved shapes.

• path = Path([(0, 0), (1, 1)]) creates a line from (0, 0) to (1, 1).
• path = TextPath((0, 0), ’ABC’) creates a curve drawing ’ABC’.
• patch = ax.add_patch(PathPatch(path, ...)) represents the curve.

Q9: Create these two images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

The Path class is useful in creating curved shapes.
• path = Path([(0, 0), (1, 1)]) creates a line from (0, 0) to (1, 1).

• path = TextPath((0, 0), ’ABC’) creates a curve drawing ’ABC’.
• patch = ax.add_patch(PathPatch(path, ...)) represents the curve.

Q9: Create these two images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

The Path class is useful in creating curved shapes.
• path = Path([(0, 0), (1, 1)]) creates a line from (0, 0) to (1, 1).
• path = TextPath((0, 0), ’ABC’) creates a curve drawing ’ABC’.

• patch = ax.add_patch(PathPatch(path, ...)) represents the curve.

Q9: Create these two images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

The Path class is useful in creating curved shapes.
• path = Path([(0, 0), (1, 1)]) creates a line from (0, 0) to (1, 1).
• path = TextPath((0, 0), ’ABC’) creates a curve drawing ’ABC’.
• patch = ax.add_patch(PathPatch(path, ...)) represents the curve.

Q9: Create these two images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

The Path class is useful in creating curved shapes.
• path = Path([(0, 0), (1, 1)]) creates a line from (0, 0) to (1, 1).
• path = TextPath((0, 0), ’ABC’) creates a curve drawing ’ABC’.
• patch = ax.add_patch(PathPatch(path, ...)) represents the curve.

Q9: Create these two images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

The Path class is useful in creating curved shapes.
• path = Path([(0, 0), (1, 1)]) creates a line from (0, 0) to (1, 1).
• path = TextPath((0, 0), ’ABC’) creates a curve drawing ’ABC’.
• patch = ax.add_patch(PathPatch(path, ...)) represents the curve.

Q9: Create these two images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

The Path class is useful in creating curved shapes.
• path = Path([(0, 0), (1, 1)]) creates a line from (0, 0) to (1, 1).
• path = TextPath((0, 0), ’ABC’) creates a curve drawing ’ABC’.
• patch = ax.add_patch(PathPatch(path, ...)) represents the curve.

Q9: Create these two images.

→→→→→→→→→→→ AI solutions (AI-know, ChatGPT, Gemini)

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

The Path class is useful in creating curved shapes.
• path = Path([(0, 0), (1, 1)]) creates a line from (0, 0) to (1, 1).
• path = TextPath((0, 0), ’ABC’) creates a curve drawing ’ABC’.
• patch = ax.add_patch(PathPatch(path, ...)) represents the curve.

Q9: Create these two images.

→→→→→→→→→→→ AI solutions (AI-know, ChatGPT, Gemini)

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

The Path class is useful in creating curved shapes.
• path = Path([(0, 0), (1, 1)]) creates a line from (0, 0) to (1, 1).
• path = TextPath((0, 0), ’ABC’) creates a curve drawing ’ABC’.
• patch = ax.add_patch(PathPatch(path, ...)) represents the curve.

Q9: Create these two images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

172. if __name__ == ’__main__’:
173. vis = Visual.square(dpi=500)
174. vis.set_boundary(1.5)
175. N = vis.ax.add_patch(PathPatch(
176. path=Path([(-1, -1), (-1, 1), (1, -1), (1, 1)]),
177. lw=3,
178.))
179. T = vis.ax.add_patch(PathPatch(
180. path=TextPath(xy=(-1, 0), s=’Text’, size=1),
181. color=’crimson’,
182.))
183. vis.new_frame()
184. N.set_fill(False)
185. T.set_lw(0)
186. vis.new_frame()

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
• Using matplotlib.transforms is the recommended way, but not covered here.
• path.vertices gives acces to the vertices of the curve as a numpy array.
• bbox = path.get_extents() provides a bounding box containing the text.
• bbox is an element of matplotlib.transforms.Bbox, with useful properties.
• Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Q10: Create these three images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.

• Using matplotlib.transforms is the recommended way, but not covered here.
• path.vertices gives acces to the vertices of the curve as a numpy array.
• bbox = path.get_extents() provides a bounding box containing the text.
• bbox is an element of matplotlib.transforms.Bbox, with useful properties.
• Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Q10: Create these three images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
• Using matplotlib.transforms is the recommended way, but not covered here.

• path.vertices gives acces to the vertices of the curve as a numpy array.
• bbox = path.get_extents() provides a bounding box containing the text.
• bbox is an element of matplotlib.transforms.Bbox, with useful properties.
• Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Q10: Create these three images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
• Using matplotlib.transforms is the recommended way, but not covered here.
• path.vertices gives acces to the vertices of the curve as a numpy array.

• bbox = path.get_extents() provides a bounding box containing the text.
• bbox is an element of matplotlib.transforms.Bbox, with useful properties.
• Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Q10: Create these three images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
• Using matplotlib.transforms is the recommended way, but not covered here.
• path.vertices gives acces to the vertices of the curve as a numpy array.
• bbox = path.get_extents() provides a bounding box containing the text.

• bbox is an element of matplotlib.transforms.Bbox, with useful properties.
• Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Q10: Create these three images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
• Using matplotlib.transforms is the recommended way, but not covered here.
• path.vertices gives acces to the vertices of the curve as a numpy array.
• bbox = path.get_extents() provides a bounding box containing the text.
• bbox is an element of matplotlib.transforms.Bbox, with useful properties.

• Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Q10: Create these three images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
• Using matplotlib.transforms is the recommended way, but not covered here.
• path.vertices gives acces to the vertices of the curve as a numpy array.
• bbox = path.get_extents() provides a bounding box containing the text.
• bbox is an element of matplotlib.transforms.Bbox, with useful properties.
• Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Q10: Create these three images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
• Using matplotlib.transforms is the recommended way, but not covered here.
• path.vertices gives acces to the vertices of the curve as a numpy array.
• bbox = path.get_extents() provides a bounding box containing the text.
• bbox is an element of matplotlib.transforms.Bbox, with useful properties.
• Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Q10: Create these three images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
• Using matplotlib.transforms is the recommended way, but not covered here.
• path.vertices gives acces to the vertices of the curve as a numpy array.
• bbox = path.get_extents() provides a bounding box containing the text.
• bbox is an element of matplotlib.transforms.Bbox, with useful properties.
• Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Q10: Create these three images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
• Using matplotlib.transforms is the recommended way, but not covered here.
• path.vertices gives acces to the vertices of the curve as a numpy array.
• bbox = path.get_extents() provides a bounding box containing the text.
• bbox is an element of matplotlib.transforms.Bbox, with useful properties.
• Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Q10: Create these three images.

→→→→→→→→→→→ AI solutions (AI-know, ChatGPT, Gemini)

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
• Using matplotlib.transforms is the recommended way, but not covered here.
• path.vertices gives acces to the vertices of the curve as a numpy array.
• bbox = path.get_extents() provides a bounding box containing the text.
• bbox is an element of matplotlib.transforms.Bbox, with useful properties.
• Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Q10: Create these three images.

→→→→→→→→→→→ AI solutions (AI-know, ChatGPT, Gemini)

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
• Using matplotlib.transforms is the recommended way, but not covered here.
• path.vertices gives acces to the vertices of the curve as a numpy array.
• bbox = path.get_extents() provides a bounding box containing the text.
• bbox is an element of matplotlib.transforms.Bbox, with useful properties.
• Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Q10: Create these three images.

Drawings

Visualization using Python Benôıt CorsiniCreating drawings

172. if __name__ == ’__main__’:
173. vis = Visual.square(dpi=500)
174. vis.set_boundary()
175. path = TextPath(xy=(0, 0), s=’\u2665’, size=1)
176. patch = vis.ax.add_patch(PathPatch(path=path))
177. patch.set(lw=5, color=’crimson’, fill=False, joinstyle=’round’)
178. vis.new_frame()
179. bbox = path.get_extents()
180. vertices = (path.vertices - (bbox.p0 + bbox.p1)/2)/bbox.size
181. path = Path(vertices=vertices, codes=path.codes)
182. patch.set(path=path)
183. vis.new_frame()
184. vis.set_boundary(0.5)
185. patch.set(lw=0, fill=True)
186. vis.new_frame()

Drawing a heart

Visualization using Python Benôıt CorsiniCreating drawings

The solution of Q10 includes the following code which automatically adds a patch accessed using the
heart attribute of the class.

170. def add_heart(self, size=1, *args, **kwargs):
171. path = TextPath(xy=(0, 0), s=’\u2665’, size=1)
172. bbox = path.get_extents()
173. vertices = size*(path.vertices - (bbox.p0 + bbox.p1)/2)/bbox.size

. resizes the vertices around the origin

174. path = Path(vertices=vertices, codes=path.codes)
175. self.heart = vis.ax.add_patch(PathPatch(path=path, *args, **kwargs))

Drawing a heart

Visualization using Python Benôıt CorsiniCreating drawings

The solution of Q10 includes the following code which automatically adds a patch accessed using the
heart attribute of the class.

170. def add_heart(self, size=1, *args, **kwargs):
171. path = TextPath(xy=(0, 0), s=’\u2665’, size=1)
172. bbox = path.get_extents()
173. vertices = size*(path.vertices - (bbox.p0 + bbox.p1)/2)/bbox.size

. resizes the vertices around the origin

174. path = Path(vertices=vertices, codes=path.codes)
175. self.heart = vis.ax.add_patch(PathPatch(path=path, *args, **kwargs))

Drawing a heart

Visualization using Python Benôıt CorsiniCreating drawings

The solution of Q10 includes the following code which automatically adds a patch accessed using the
heart attribute of the class.

170. def add_heart(self, size=1, *args, **kwargs):
171. path = TextPath(xy=(0, 0), s=’\u2665’, size=1)
172. bbox = path.get_extents()
173. vertices = size*(path.vertices - (bbox.p0 + bbox.p1)/2)/bbox.size

. resizes the vertices around the origin

174. path = Path(vertices=vertices, codes=path.codes)
175. self.heart = vis.ax.add_patch(PathPatch(path=path, *args, **kwargs))

Drawing a heart

Visualization using Python Benôıt CorsiniCreating drawings

The solution of Q10 includes the following code which automatically adds a patch accessed using the
heart attribute of the class.

170. def add_heart(self, size=1, *args, **kwargs):
171. path = TextPath(xy=(0, 0), s=’\u2665’, size=1)
172. bbox = path.get_extents()
173. vertices = size*(path.vertices - (bbox.p0 + bbox.p1)/2)/bbox.size resizes the vertices around the origin
174. path = Path(vertices=vertices, codes=path.codes)
175. self.heart = vis.ax.add_patch(PathPatch(path=path, *args, **kwargs))

Drawing a heart

Visualization using Python Benôıt CorsiniCreating drawings

Q11: Create the drawn heart effect.

Drawing a heart

Visualization using Python Benôıt CorsiniCreating drawings

Q11: Create the drawn heart effect.

Drawing a heart

Visualization using Python Benôıt CorsiniCreating drawings

Q11: Create the drawn heart effect.

Drawing a heart

Visualization using Python Benôıt CorsiniCreating drawings

177. def draw_heart(self, duration, *args, **kwargs):
178. n_steps = self.duration_to_number(duration)
179. wedge = self.ax.add_patch(
180. Wedge((0, 0), 1, 270, 270, visible=False)
181.)
182. self.heart.set_clip_path(wedge)
183. for index in range(n_steps):
184. wedge.set_theta1(270 - 360*(1 + index)/n_steps)
185. self.new_frame()
186.

187.

188.

189. if __name__ == ’__main__’:
190. vis = Visual.square(dpi=500)
191. vis.set_boundary()
192. vis.add_heart(ec=’crimson’, lw=2, fill=False, joinstyle=’round’)
193. vis.draw_heart(0.5)

Zooming effect

Visualization using Python Benôıt CorsiniCreating drawings

Q12: Create a zooming and fading effect.

Zooming effect

Visualization using Python Benôıt CorsiniCreating drawings

Q12: Create a zooming and fading effect.

Zooming effect

Visualization using Python Benôıt CorsiniCreating drawings

Q12: Create a zooming and fading effect.

Zooming effect

Visualization using Python Benôıt CorsiniCreating drawings

187. def zoom_in(self, duration, zoom=0.5):
188. n_steps = self.duration_to_number(duration)
189. for index in range(n_steps):
190. ratio = (1 + index)/n_steps
191. self.heart.set_fc((1, 1, 1, ratio))
192. self.set_boundary(1 - ratio*(1 - zoom))
193. self.new_frame()
194.

195.

196.

197. if __name__ == ’__main__’:
198. vis = Visual.square(dpi=500)
199. vis.set_boundary()
200. vis.add_image(filename=’singapore.jpg’, shift=0.4)
201. vis.add_heart(ec=’crimson’, lw=2, joinstyle=’round’)
202. vis.zoom_in(0.5, zoom=0.2)

Table of contents

Visualization using Python Benôıt CorsiniConclusion

•

•

•

•

•

Extending the Figure class

Importing images

Creating shapes

Creating drawings

Conclusion

Final video

Visualization using Python Benôıt CorsiniConclusion

Q13: Combine all functions to create the original video.

Final video

Visualization using Python Benôıt CorsiniConclusion

Q13: Combine all functions to create the original video.

Final video

Visualization using Python Benôıt CorsiniConclusion

Q13: Combine all functions to create the original video.

Final video

Visualization using Python Benôıt CorsiniConclusion

197. if __name__ == ’__main__’:
198. vis = Visual.square(dpi=1000)
199. vis.set_boundary()
200. vis.wait(duration=0.5)
201. vis.add_image(filename=’singapore.jpg’, shift=0.4)
202. vis.image_appear(duration=1)
203. vis.wait(duration=0.5)
204. vis.make_spheres(number=5, color=’gold’, dark=’darkgoldenrod’)
205. vis.drop_spheres(duration=3)
206. vis.schrink_spheres(duration=1)
207. vis.wait(duration=0.5)
208. vis.add_heart(size=1.5)
209. vis.heart.set(ec=’crimson’, fc=4*[0], lw=3, joinstyle=’round’)
210. vis.draw_heart(duration=1)
211. vis.wait(duration=0.5)
212. vis.zoom_in(duration=1, zoom=0.2)
213. vis.make_video()

Final comments

Visualization using Python Benôıt CorsiniConclusion

Hopefully, this presentation helped understand matplotlib and its potential.
• Create detailed images pixel by pixel.
• Use shapes to represent 3D effects.
• Combine texts and curves for personalized designs.

This package also contains other useful tools not covered here.
• matplotlib.transforms for moving shapes around.
• matplotlib.colors for creating smooth color transitions.

And so much more still remain to be discovered and applied!

Final comments

Visualization using Python Benôıt CorsiniConclusion

Hopefully, this presentation helped understand matplotlib and its potential.

• Create detailed images pixel by pixel.
• Use shapes to represent 3D effects.
• Combine texts and curves for personalized designs.

This package also contains other useful tools not covered here.
• matplotlib.transforms for moving shapes around.
• matplotlib.colors for creating smooth color transitions.

And so much more still remain to be discovered and applied!

Final comments

Visualization using Python Benôıt CorsiniConclusion

Hopefully, this presentation helped understand matplotlib and its potential.
• Create detailed images pixel by pixel.

• Use shapes to represent 3D effects.
• Combine texts and curves for personalized designs.

This package also contains other useful tools not covered here.
• matplotlib.transforms for moving shapes around.
• matplotlib.colors for creating smooth color transitions.

And so much more still remain to be discovered and applied!

Final comments

Visualization using Python Benôıt CorsiniConclusion

Hopefully, this presentation helped understand matplotlib and its potential.
• Create detailed images pixel by pixel.
• Use shapes to represent 3D effects.

• Combine texts and curves for personalized designs.

This package also contains other useful tools not covered here.
• matplotlib.transforms for moving shapes around.
• matplotlib.colors for creating smooth color transitions.

And so much more still remain to be discovered and applied!

Final comments

Visualization using Python Benôıt CorsiniConclusion

Hopefully, this presentation helped understand matplotlib and its potential.
• Create detailed images pixel by pixel.
• Use shapes to represent 3D effects.
• Combine texts and curves for personalized designs.

This package also contains other useful tools not covered here.
• matplotlib.transforms for moving shapes around.
• matplotlib.colors for creating smooth color transitions.

And so much more still remain to be discovered and applied!

Final comments

Visualization using Python Benôıt CorsiniConclusion

Hopefully, this presentation helped understand matplotlib and its potential.
• Create detailed images pixel by pixel.
• Use shapes to represent 3D effects.
• Combine texts and curves for personalized designs.

This package also contains other useful tools not covered here.

• matplotlib.transforms for moving shapes around.
• matplotlib.colors for creating smooth color transitions.

And so much more still remain to be discovered and applied!

Final comments

Visualization using Python Benôıt CorsiniConclusion

Hopefully, this presentation helped understand matplotlib and its potential.
• Create detailed images pixel by pixel.
• Use shapes to represent 3D effects.
• Combine texts and curves for personalized designs.

This package also contains other useful tools not covered here.
• matplotlib.transforms for moving shapes around.

• matplotlib.colors for creating smooth color transitions.

And so much more still remain to be discovered and applied!

Final comments

Visualization using Python Benôıt CorsiniConclusion

Hopefully, this presentation helped understand matplotlib and its potential.
• Create detailed images pixel by pixel.
• Use shapes to represent 3D effects.
• Combine texts and curves for personalized designs.

This package also contains other useful tools not covered here.
• matplotlib.transforms for moving shapes around.
• matplotlib.colors for creating smooth color transitions.

And so much more still remain to be discovered and applied!

Final comments

Visualization using Python Benôıt CorsiniConclusion

Hopefully, this presentation helped understand matplotlib and its potential.
• Create detailed images pixel by pixel.
• Use shapes to represent 3D effects.
• Combine texts and curves for personalized designs.

This package also contains other useful tools not covered here.
• matplotlib.transforms for moving shapes around.
• matplotlib.colors for creating smooth color transitions.

And so much more still remain to be discovered and applied!

Thank you!

Thank you!

Thank you!

Thank you!

Thank you!

Thank you!

Thank you!
Thank you!

Thank you!
Thank you!

Thank you!
Thank you!

