Visualization -using Python

An.introduction to Matplotlib

Benoit Corsini

March 16th and 30th 2026

Disclaimers

Visualization using Python Benoit Corsini

Disclaimers

Before starting, download the file below and run it to make sure all relevant libraries are imported
(the content of the file will be explained at the beginning of the presentation).

https://www.benoitcorsini.com/files/matplotlib/q0.py

Visualization using Python Benoit Corsini

Disclaimers

Before starting, download the file below and run it to make sure all relevant libraries are imported
(the content of the file will be explained at the beginning of the presentation).

https://www.benoitcorsini.com/files/matplotlib/q0.py

e This presentation is composed of several coding and visual questions.

Visualization using Python Benoit Corsini

Disclaimers

Before starting, download the file below and run it to make sure all relevant libraries are imported
(the content of the file will be explained at the beginning of the presentation).

https://www.benoitcorsini.com/files/matplotlib/q0.py

e This presentation is composed of several coding and visual questions.

o A “correct” answer is not a word for word file or a pixel for pixel image, but rather a method
that provides a similar outcome.

Visualization using Python Benoit Corsini

Disclaimers

Before starting, download the file below and run it to make sure all relevant libraries are imported
(the content of the file will be explained at the beginning of the presentation).

https://www.benoitcorsini.com/files/matplotlib/q0.py

e This presentation is composed of several coding and visual questions.

o A “correct” answer is not a word for word file or a pixel for pixel image, but rather a method
that provides a similar outcome.

o The solution of the different questions are available online, by replacing the 0 from the above
link with the corresponding question number.

Visualization using Python Benoit Corsini

Disclaimers

Before starting, download the file below and run it to make sure all relevant libraries are imported
(the content of the file will be explained at the beginning of the presentation).

https://www.benoitcorsini.com/files/matplotlib/q0.py

e This presentation is composed of several coding and visual questions.

o A “correct” answer is not a word for word file or a pixel for pixel image, but rather a method
that provides a similar outcome.

o The solution of the different questions are available online, by replacing the 0 from the above
link with the corresponding question number.

o Naturally, it is recommended to download the solution only after attempting the question.

Visualization using Python Benoit Corsini

Disclaimers

Before starting, download the file below and run it to make sure all relevant libraries are imported
(the content of the file will be explained at the beginning of the presentation).

https://www.benoitcorsini.com/files/matplotlib/q0.py

e This presentation is composed of several coding and visual questions.

o A “correct” answer is not a word for word file or a pixel for pixel image, but rather a method
that provides a similar outcome.

o The solution of the different questions are available online, by replacing the 0 from the above
link with the corresponding question number.

o Naturally, it is recommended to download the solution only after attempting the question.

e matplotlib is a massive package and not all methods and attributes can be explained in detail
here: finding the relevant information is also part of this workshop.

Visualization using Python Benoit Corsini

Table of contents

» Extending the Figure class
* |mporting images

o Creating shapes

e Creating drawings

* Conclusion

Visualization using Python Benoit Corsini

Table of contents

» Extending the Figure class

Visualization using Python Extending the Figure class Benoit Corsini

Importing packages

Visualization using Python Extending the Figure class Benoit Corsini

Importing packages

Before starting, we need to import a few packages.

Visualization using Python Extending the Figure class Benoit Corsini

Importing packages

Before starting, we need to import a few packages.
e numpy: a package for handling arrays.

Visualization using Python Extending the Figure class Benoit Corsini

Importing packages

Before starting, we need to import a few packages.
e numpy: a package for handling arrays.
e os: a package for handling files.

Visualization using Python Extending the Figure class Benoit Corsini

Importing packages

Before starting, we need to import a few packages.
e numpy: a package for handling arrays.
e os: a package for handling files.
e cv2: a package for creating videos.

Visualization using Python Extending the Figure class Benoit Corsini

Importing packages

Before starting, we need to import a few packages.
e numpy: a package for handling arrays.
e os: a package for handling files.
e cv2: a package for creating videos.

e matplotlib: a package for creating images and figures, with many subclasses. Among the relevant
subclasses, the presentation focuses on

Visualization using Python Extending the Figure class Benoit Corsini

Importing packages

Before starting, we need to import a few packages.
e numpy: a package for handling arrays.
e os: a package for handling files.
e cv2: a package for creating videos.

e matplotlib: a package for creating images and figures, with many subclasses. Among the relevant
subclasses, the presentation focuses on

o .patches: a set of classes to create shapes on the figure.

Visualization using Python Extending the Figure class Benoit Corsini

Importing packages

Before starting, we need to import a few packages.
e numpy: a package for handling arrays.
e os: a package for handling files.
e cv2: a package for creating videos.

e matplotlib: a package for creating images and figures, with many subclasses. Among the relevant
subclasses, the presentation focuses on

o .patches: a set of classes to create shapes on the figure.

o .path: a set of classes to handle lines and drawings.

Visualization using Python Extending the Figure class Benoit Corsini

Importing packages

import os

import cv2

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.patches import *
from matplotlib.path import Path
from matplotlib.figure import Figure
from matplotlib.text import TextPath

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

We now create a new class called Visual, which we use to organize our code.

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

We now create a new class called Visual, which we use to organize our code.
o Classes are objects with a set of built-in methods (for example float, list, dict, etc).

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

We now create a new class called Visual, which we use to organize our code.
o Classes are objects with a set of built-in methods (for example float, list, dict, etc).

e We create a new element of the Visual class by calling vis = Visual().

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

We now create a new class called Visual, which we use to organize our code.
o Classes are objects with a set of built-in methods (for example float, list, dict, etc).

e We create a new element of the Visual class by calling vis = Visual().

e We run built-in methods by calling vis.some method(...).

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

We now create a new class called Visual, which we use to organize our code.
o Classes are objects with a set of built-in methods (for example float, list, dict, etc).

e We create a new element of the Visual class by calling vis = Visual().

e We run built-in methods by calling vis.some method(...).

For the sake of this presentation, our class has two particularities.

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

We now create a new class called Visual, which we use to organize our code.
o Classes are objects with a set of built-in methods (for example float, list, dict, etc).

e We create a new element of the Visual class by calling vis = Visual().

e We run built-in methods by calling vis.some method(...).

For the sake of this presentation, our class has two particularities.

e It is a subclass of the Figure class from matplotlib and thus uses pre-implemented arguments
and methods using *args, **kwargs, and super ().

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

We now create a new class called Visual, which we use to organize our code.
o Classes are objects with a set of built-in methods (for example float, list, dict, etc).

e We create a new element of the Visual class by calling vis = Visual().

e We run built-in methods by calling vis.some method(...).

For the sake of this presentation, our class has two particularities.
e It is a subclass of the Figure class from matplotlib and thus uses pre-implemented arguments
and methods using *args, **kwargs, and super ().
o |t has a default square method using the @classmethod decorator, which creates a square figure
and obtained by calling vis = Visual.square(...).

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

class Visual(Figure):

def _ init__(self, *args, **kwargs):
super () .__init__(*args, **kwargs)

@classmethod
def square(cls, *args, **kwargs):
return cls(figsize=(1, 1), *args, **kwargs)

if name ==’ main_’:
vis = Visual.square(dpi=500)

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

class Visual(Figure): Figure

def _ init__(self, *args, **kwargs):
super () .__init__(*args, **kwargs)

@classmethod
def square(cls, *args, **kwargs):
return cls(figsize=(1, 1), *args, **kwargs)

if name ==’ main_’:
vis = Visual.square(dpi=500)

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

class Visual(Figure): Figure

def _ init__(self, *args, **kwargs):
super () .__init__(*args, **kwargs)

@classmethod
def square(cls, *args, **kwargs):
return cls(figsize=(1, 1), *args, **kwargs)

if name ==’ main_’:
vis = Visual.square(dpi=500)

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

class Visual(Figure): Figure

def _ init__(self, *args, **kwargs):
super () .__init__(*args, **kwargs)

@classmethod
def square(cls, *args, **kwargs):
return cls(figsize=(1, 1), *args, **kwargs)

if name ==’ main_’:
vis = Visual.square(dpi=500)

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

class Visual(Figure): Figure

def _ init__(self, *args, **kwargs):
super () .__init__(*args, **kwargs)

@classmethod
def square(cls, *args, **kwargs):
return cls(figsize=(1, 1), *args, **kwargs)

if name ==’ main_’:
vis = Visual.square(dpi=500)

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the file

class Visual(Figure): Figure

def _ init__(self, *args, **kwargs):
super () .__init__(*args, **kwargs)

@classmethod
def square(cls, *args, **kwargs):
return cls(figsize=(1, 1), *args, **kwargs)

if name ==’ main_’:
vis = Visual.square(dpi=500)

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the figure and axes

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the figure and axes

Since we want to create visuals and not graphs, we need to remove the extra space and axes that are
part of a default Figure element.

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the figure and axes

Since we want to create visuals and not graphs, we need to remove the extra space and axes that are
part of a default Figure element.

e |In matplotlib, the Figure class always requires at least one Axes class in order to represent
objects on the figure, using the add subplot(...) method.

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the figure and axes

Since we want to create visuals and not graphs, we need to remove the extra space and axes that are
part of a default Figure element.

e |In matplotlib, the Figure class always requires at least one Axes class in order to represent
objects on the figure, using the add subplot(...) method.

e In order to remove the extra space around the figure, we call subplots adjust(...).

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the figure and axes

Since we want to create visuals and not graphs, we need to remove the extra space and axes that are
part of a default Figure element.

e |In matplotlib, the Figure class always requires at least one Axes class in order to represent
objects on the figure, using the add subplot(...) method.

e In order to remove the extra space around the figure, we call subplots adjust(...).
e In order to hide the axes on the figure, we call set _axis off(...)

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the figure and axes

Since we want to create visuals and not graphs, we need to remove the extra space and axes that are
part of a default Figure element.

e |In matplotlib, the Figure class always requires at least one Axes class in order to represent
objects on the figure, using the add subplot(...) method.

e In order to remove the extra space around the figure, we call subplots adjust(...).
e In order to hide the axes on the figure, we call set _axis off(...)
o Finally, we put this code into a hidden dunder (double-under) method for clarity.

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the figure and axes

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self. figure ()

@classmethod
def square(cls, *args, **kwargs):
return cls(figsize=(1, 1), *args, **kwargs)

def _ figure (self):
self.subplots_adjust(left=0, right=1, bottom=0, top=1)
self.ax = self.add_subplot()
self.ax.set_axis off()

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the figure and axes

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self. figure ()

@classmethod
def square(cls, *args, **kwargs):
return cls(figsize=(1, 1), *args, **kwargs)

def _ figure (self):
self.subplots_adjust(left=0, right=1, bottom=0, top=1)
self.ax = self.add_subplot()
self.ax.set_axis off()

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the figure and axes

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self. figure ()

@classmethod
def square(cls, *args, **kwargs):
return cls(figsize=(1, 1), *args, **kwargs)

def _ figure (self):
self.subplots_adjust(left=0, right=1, bottom=0, top=1)
self.ax = self.add_subplot()
self.ax.set_axis off()

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the figure and axes

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self. figure ()

@classmethod
def square(cls, *args, **kwargs):
return cls(figsize=(1, 1), *args, **kwargs)

def _ figure (self):
self.subplots_adjust(left=0, right=1, bottom=0, top=1)
self.ax = self.add_subplot() Axes
self.ax.set_axis off()

Visualization using Python Extending the Figure class Benoit Corsini

Initializing the figure and axes

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self. figure ()

@classmethod
def square(cls, *args, **kwargs):
return cls(figsize=(1, 1), *args, **kwargs)

def _ figure (self):
self.subplots_adjust(left=0, right=1, bottom=0, top=1)
self.ax = self.add_subplot() Axes
self.ax.set_axis off()

Visualization using Python Extending the Figure class Benoit Corsini

Auto-creating frames

Visualization using Python Extending the Figure class Benoit Corsini

Auto-creating frames

Since we are interested in creating videos, we add a couple of attributes and methods.

Visualization using Python Extending the Figure class Benoit Corsini

Auto-creating frames

Since we are interested in creating videos, we add a couple of attributes and methods.

e For the video renderer, we need to have the number of frames per second (fps) which we add as
an input of the class.

Visualization using Python Extending the Figure class Benoit Corsini

Auto-creating frames

Since we are interested in creating videos, we add a couple of attributes and methods.
e For the video renderer, we need to have the number of frames per second (fps) which we add as

an input of the class.
e To simplify the creation of the different frames, we implement a new frame method, which auto-
matically organizes saves the current state of the figure and increases the frame count by 1.

Benoit Corsini

Extending the Figure class

Visualization using Python

Auto-creating frames

def __init__(self, fps=30, *args, **kwargs):
super().__init__(*args, **kwargs)
self. figure ()
self . fps = fps
self.frame index = 0

def new frame(self):
if not os.path.exists(’frames’):
os.mkdir (’frames’)
self.savefig(f’frames/{self.frame_index:04d}.png’)
self.frame index += 1

Visualization using Python Extending the Figure class Benoit Corsini

Auto-creating frames

def __init__(self, fps=30, *args, **kwargs):
super().__init__(*args, **kwargs)
self. figure ()
self . fps = fps
self.frame index = 0

def new frame(self):
if not os.path.exists(’frames’):
os.mkdir (’frames’)
self.savefig(f’frames/{self.frame_index:04d}.png’)
self.frame index += 1

Visualization using Python Extending the Figure class Benoit Corsini

Auto-creating frames

def __init__(self, fps=30, *args, **kwargs):
super().__init__(*args, **kwargs)
self. figure ()
self . fps = fps
self.frame index = 0

def new frame(self):
if not os.path.exists(’frames’):
os.mkdir (’frames’)
self.savefig(f’frames/{self.frame_index:04d}.png’)
self.frame index += 1

Visualization using Python Extending the Figure class Benoit Corsini

Auto-creating frames

def __init__(self, fps=30, *args, **kwargs):
super().__init__(*args, **kwargs)
self. figure ()
self . fps = fps
self.frame index = 0

def new frame(self):
if not os.path.exists(’frames’):
os.mkdir (’frames’)
self.savefig(f’frames/{self.frame_index:04d}.png’)
self.frame index += 1

Visualization using Python Extending the Figure class Benoit Corsini

Auto-creating frames

def __init__(self, fps=30, *args, **kwargs):
super().__init__(*args, **kwargs)
self. figure ()
self . fps = fps
self.frame index = 0

def new frame(self):
if not os.path.exists(’frames’):
os.mkdir (’frames’)
self.savefig(f’frames/{self.frame_index:04d}.png’)
self.frame index += 1

Visualization using Python Extending the Figure class Benoit Corsini

Combining frames for the video

Visualization using Python Extending the Figure class Benoit Corsini

Combining frames for the video

Finally, we need to combine all the created frames into a single video using the cv2 package.

Visualization using Python Extending the Figure class Benoit Corsini

Combining frames for the video

Finally, we need to combine all the created frames into a single video using the cv2 package.

— The structure make video strongly relies on the structure of the cv2 package, in particular the
existence of silent errors, halting the code prior to completion without raising any error.

Visualization using Python Extending the Figure class Benoit Corsini

Combining frames for the video

def make video(self, filename=’video’):
frames = sorted([
os.path.join(’frames’, file)
for file in os.listdir(’frames’)
1)
height, width, _ = cv2.imread(frames[0]) .shape
video = cv2.VideoWriter(
filename=filename + ’.mp4’,
fourcc=cv2.VideoWriter_fourcc(*’mp4v’),
fps=self.fps,
frameSize=(width, height),
)
for frame in frames:
video.write(cv2.imread (frame))
video.release()
cv2.destroyAllWindows ()

Visualization using Python Extending the Figure class Benoit Corsini

Combining frames for the video

def make video(self, filename=’video’):
frames = sorted([
os.path.join(’frames’, file)
for file in os.listdir(’frames’)
1)
height, width, _ = cv2.imread(frames[0]) .shape
video = cv2.VideoWriter(
filename=filename + ’.mp4’,
fourcc=cv2.VideoWriter_fourcc(*’mp4v’),
fps=self.fps,
frameSize=(width, height),
)
for frame in frames:
video.write(cv2.imread (frame))
video.release()
cv2.destroyAllWindows ()

Visualization using Python Extending the Figure class Benoit Corsini

Combining frames for the video

def make video(self, filename=’video’):
frames = sorted([
os.path.join(’frames’, file)
for file in os.listdir(’frames’)
1)
height, width, _ = cv2.imread(frames[0]) .shape
video = cv2.VideoWriter(
filename=filename + ’.mp4’,
fourcc=cv2.VideoWriter_fourcc(*’mp4dv’),
fps=self.fps,
frameSize=(width, height),
)
for frame in frames:
video.write(cv2.imread (frame))
video.release()
cv2.destroyAllWindows ()

Visualization using Python Extending the Figure class Benoit Corsini

Combining frames for the video

def make video(self, filename=’video’):
frames = sorted([
os.path.join(’frames’, file)
for file in os.listdir(’frames’)
1)
height, width, _ = cv2.imread(frames[0]) .shape
video = cv2.VideoWriter(
filename=filename + ’.mp4’,
fourcc=cv2.VideoWriter_fourcc(*’mp4dv’),
fps=self.fps,
frameSize=(width, height),
)
for frame in frames:
video.write(cv2.imread (frame))
video.release()
cv2.destroyAllWindows ()

Visualization using Python Extending the Figure class Benoit Corsini

Combining frames for the video

def make video(self, filename=’video’):
frames = sorted([
os.path.join(’frames’, file)
for file in os.listdir(’frames’)
1)
height, width, _ = cv2.imread(frames[0]) .shape
video = cv2.VideoWriter(
filename=filename + ’.mp4’,
fourcc=cv2.VideoWriter_fourcc(*’mp4dv’),
fps=self.fps,
frameSize=(width, height),
)
for frame in frames:
video.write(cv2.imread (frame))
video.release()
cv2.destroyAllWindows ()

Visualization using Python Extending the Figure class Benoit Corsini

Combining frames for the video

def make video(self, filename=’video’):
frames = sorted([
os.path.join(’frames’, file)
for file in os.listdir(’frames’)
1)
height, width, _ = cv2.imread(frames[0]) .shape
video = cv2.VideoWriter(
filename=filename + ’.mp4’,
fourcc=cv2.VideoWriter_fourcc(*’mp4dv’),
fps=self.fps,
frameSize=(width, height),
)
for frame in frames:
video.write(cv2.imread (frame))
video.release()
cv2.destroyAllWindows ()

Visualization using Python Extending the Figure class Benoit Corsini

Combining frames for the video

def make video(self, filename=’video’):
frames = sorted([
os.path.join(’frames’, file)
for file in os.listdir(’frames’)
1)
height, width, _ = cv2.imread(frames[0]) .shape
video = cv2.VideoWriter(
filename=filename + ’.mp4’,
fourcc=cv2.VideoWriter_fourcc(*’mp4dv’),
fps=self.fps,
frameSize=(width, height),
)
for frame in frames:
video.write(cv2.imread (frame))
video.release()
cv2.destroyAllWindows ()

Visualization using Python Extending the Figure class Benoit Corsini

A first video

Visualization using Python Extending the Figure class Benoit Corsini

A first video

(D1: Create a 5 seconds video using the code above, also available at:

https://www.benoitcorsini.com/files/matplotlib/q0.py

Visualization using Python Extending the Figure class Benoit Corsini

A first video

def duration to number(self, duration):
return int(duration*self.fps)

def wait(self, duration):
for _ in range(self.duration_to_number(duration)):

self.new _frame()

if name ==’ main_ ’:
vis = Visual.square(dpi=500)
vis.wait(5)
vis.make video()

Visualization using Python Extending the Figure class Benoit Corsini

A first video

def duration to number(self, duration):
return int(duration*self.fps)

def wait(self, duration):
for _ in range(self.duration_to_number(duration)):

self.new _frame()

if name ==’ main_ ’:
vis = Visual.square(dpi=500)
vis.wait(5)
vis.make video()

Visualization using Python Extending the Figure class Benoit Corsini

A first video

def duration to number(self, duration):
return int(duration*self.fps)

def wait(self, duration):
for _ in range(self.duration_to_number(duration)):

self.new _frame()

if name ==’ main_ ’:
vis = Visual.square(dpi=500)
vis.wait(5)
vis.make video()

Visualization using Python Extending the Figure class Benoit Corsini

Table of contents

* |mporting images

Visualization using Python Importing images Benoit Corsini

Adding an image

Visualization using Python Importing images Benoit Corsini

Adding an image

A few useful functions to import and manipulate images.

Visualization using Python Importing images Benoit Corsini

Adding an image

A few useful functions to import and manipulate images.
We transform an image into a matrix by calling X = plt.imread(filename).

Visualization using Python Importing images Benoit Corsini

Adding an image

A few useful functions to import and manipulate images.
We transform an image into a matrix by calling X = plt.imread(filename).

We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).

Visualization using Python Importing images Benoit Corsini

Adding an image

A few useful functions to import and manipulate images.
We transform an image into a matrix by calling X = plt.imread(filename).
We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).

We can later modify the image by calling image.set(...).

Visualization using Python Importing images Benoit Corsini

Adding an image

A few useful functions to import and manipulate images.
We transform an image into a matrix by calling X = plt.imread(filename).
We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).

We can later modify the image by calling image.set(...).

For example, we make it invisible by calling image.set (visible=False).

Visualization using Python Importing images Benoit Corsini

Adding an image

A few useful functions to import and manipulate images.
We transform an image into a matrix by calling X = plt.imread(filename).
We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).

We can later modify the image by calling image.set(...).

For example, we make it invisible by calling image.set (visible=False).

Alternatively, this can also be done by calling image.set visible(False).

Visualization using Python Importing images Benoit Corsini

Adding an image

A few useful functions to import and manipulate images.
We transform an image into a matrix by calling X = plt.imread(filename).
We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).

We can later modify the image by calling image.set(...).

For example, we make it invisible by calling image.set (visible=False).

Alternatively, this can also be done by calling image.set visible(False).

(2: Import an image into the figure.

Visualization using Python Importing images Benoit Corsini

Adding an image

def set_boundary(self, boundary=1):
self.ax.set_xlim(-boundary, boundary)
self.ax.set_ylim(-boundary, boundary)

def add_image(self, filename, shift=0, *args, **kwargs):
X = plt.imread(filename)
self.image = self.ax.imshow(
X=X,
extent=(
shift - 1 - 2*X.shape[0]/X.shapel[1],
shift + 1,
-1,
1,
)
*args,
x*xkwargs,

Visualization using Python Importing images Benoit Corsini

Adding an image

if name ==’ main_ ’:
vis = Visual.square(dpi=500)
vis.set_boundary()
vis.add_image(filename=’singapore. jpg’, shift=0.4)
vis.new_ frame()

Visualization using Python Importing images Benoit Corsini

Making the image appear

Visualization using Python Importing images Benoit Corsini

Making the image appear

A few useful functions to import and manipulate images.
We transform an image into a matrix by calling X = plt.imread(filename).
We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).

We can later modify the image by calling image.set(...).

For example, we make it invisible by calling image.set (visible=False).

Alternatively, this can also be done by calling image.set visible(False).

Visualization using Python Importing images Benoit Corsini

Making the image appear

A few useful functions to import and manipulate images.
We transform an image into a matrix by calling X = plt.imread(filename).
We import this matrix as in image in our figure by calling image = self.ax.imshow(X, ...).

We can later modify the image by calling image.set(...).

For example, we make it invisible by calling image.set (visible=False).

Alternatively, this can also be done by calling image.set visible(False).

()3: Make an image fade in.

Visualization using Python Importing images Benoit Corsini

Making the image appear

def image appear(self, duration):
n_steps = self.duration_to_number(duration)
for step in range(n_steps):
self.image.set_alpha((1 + step)/n_steps)
self.new frame()

if name ==’ _ main_ ’:
vis = Visual.square(dpi=500)
vis.set_boundary()
vis.add_image(filename=’singapore. jpg’, shift=0.4)
vis.image.set_alpha(0)
vis.new frame()
vis.image appear(0.1)

Visualization using Python Importing images Benoit Corsini

Making the image appear

def image appear(self, duration):
n_steps = self.duration_to_number(duration)
for step in range(n_steps):

self.image.set_alpha((1 + step)/n_steps)
self.new frame()

if name ==’ _ main_ ’:

vis = Visual.square(dpi=500)

vis.set_boundary()
vis.add_image(filename=’singapore. jpg’, shift=0.4)
vis.image.set_alpha(0)

vis.new frame()

vis.image appear(0.1)

Visualization using Python Importing images Benoit Corsini

Table of contents

» Creating shapes

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

Shapes in matplotlib are handled by subclasses of matplotlib.patches:

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

Shapes in matplotlib are handled by subclasses of matplotlib.patches:
Circle, Rectangle, Polygon, etc, are some of the classes, each with its own inputs.

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

Shapes in matplotlib are handled by subclasses of matplotlib.patches:
Circle, Rectangle, Polygon, etc, are some of the classes, each with its own inputs.

patch = Circle((0, 0), ...) creates a circle patch centered at the origin.

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

Shapes in matplotlib are handled by subclasses of matplotlib.patches:
Circle, Rectangle, Polygon, etc, are some of the classes, each with its own inputs.

patch = Circle((0, 0), ...) creates a circle patch centered at the origin.
ax.add patch(patch) adds the patch to the figure.

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

Shapes in matplotlib are handled by subclasses of matplotlib.patches:
Circle, Rectangle, Polygon, etc, are some of the classes, each with its own inputs.

patch = Circle((0, 0), ...) creates a circle patch centered at the origin.
ax.add patch(patch) adds the patch to the figure.
patch = ax.add patch(Circle((0, 0), ...)) isthe same as the previous two steps.

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

Shapes in matplotlib are handled by subclasses of matplotlib.patches:
Circle, Rectangle, Polygon, etc, are some of the classes, each with its own inputs.

patch = Circle((0, 0), ...) creates a circle patch centered at the origin.
ax.add patch(patch) adds the patch to the figure.
patch = ax.add patch(Circle((0, 0), ...)) isthe same as the previous two steps.

patch.set(...) allows to later modify the patch.

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

Shapes in matplotlib are handled by subclasses of mat;

o Circle, Rectangle, Polygon, etc, are some of the
e patch = Circle((0, 0), ...) creates a circle ps
e ax.add patch(patch) adds the patch to the figure
e patch = ax.add patch(Circle((0, 0), ...))
o patch.set(...) allows to later modify the patch.

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

Shapes in matplotlib:

e Circle, Rectangle, Polygon, etc

e patch = Circle((0, 0), ...)

e ax.add patch(patch)

e patch = ax.add patch(Circle((0, 0), ...))
e patch.set(...)

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

Shapes in matplotlib:

e Circle, Rectangle, Polygon, etc

e patch = Circle((0, 0), ...)

e ax.add patch(patch)

e patch = ax.add patch(Circle((0, 0), ...))
e patch.set(...)

(4: Create this image.

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

Shapes in matplotlib:

e Circle, Rectangle, Polygon, etc

e patch = Circle((0, 0), ...)

e ax.add patch(patch)

e patch = ax.add patch(Circle((0, 0), ...))
e patch.set(...)

(4: Create this image.

— Al solutions (Al-know, ChatGPT, Gemini)

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

Shapes in matplotlib:

e Circle, Rectangle, Polygon, etc

e patch = Circle((0, 0), ...)

e ax.add patch(patch)

e patch = ax.add patch(Circle((0, 0), ...))
e patch.set(...)

(4: Create this image.

— Al solutions (Al-know, ChatGPT, Gemini)

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

Shapes in matplotlib:

e Circle, Rectangle, Polygon, etc

e patch = Circle((0, 0), ...)

e ax.add patch(patch)

e patch = ax.add patch(Circle((0, 0), ...))
e patch.set(...)

(4: Create this image.

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

if name ==’ main_ ’:

vis = Visual.square(dpi=500)

vis.set_boundary(1.1)

vis.ax.add_patch(Rectangle(
xy=(-1, -1),
width=2,
height=2,
edgecolor=’"darkgreen’,
facecolor="forestgreen’,
linewidth=4,
capstyle=’round’,
joinstyle=’round’,

)

Visualization using Python Creating shapes Benoit Corsini

Shapes in matplotlib

vis.ax.add_patch(Circle(
xy=(0, 0),
radius=0.5,
ec=’darkgoldenrod’,
fc="gold’,
lw=2,

)

vis.ax.add_patch(Wedge(
center=(0, 0),

thetal=45,
theta2=135,

r=1,
color=’crimson’,
1w=0,

alpha=0.5,

)

vis.new frame()

Visualization using Python

Creating shapes

Benoit Corsini

3D effect

Visualization using Python Creating shapes Benoit Corsini

3D effect

Shapes in matplotlib:
Circle, Rectangle, Polygon, etc
patch = Circle((0, 0), ...)
ax.add_patch(patch)
patch = ax.add patch(Circle((0, 0), ...))
patch.set(...)

Visualization using Python Creating shapes Benoit Corsini

3D effect

Shapes in matplotlib:
Circle, Rectangle, Polygon, etc
patch = Circle((0, 0), ...)
ax.add_patch(patch)
patch = ax.add patch(Circle((0, 0), ...))
patch.set(...)

()5: Create a sphere.

Visualization using Python Creating shapes Benoit Corsini

3D effect

Shapes in matplotlib:

e Circle, Rectangle, Polygon, etc

e patch = Circle((0, 0), ...)

e ax.add patch(patch)

e patch = ax.add patch(Circle((0, 0), ...))
e patch.set(...)

()5: Create a sphere.

Visualization using Python Creating shapes Benoit Corsini

3D effect

Shapes in matplotlib:

e Circle, Rectangle, Polygon, etc

e patch = Circle((0, 0), ...)

e ax.add patch(patch)

e patch = ax.add patch(Circle((0, 0), ...))
e patch.set(...)

()5: Create a sphere.

— Al solutions (Al-know, ChatGPT, Gemini)

Visualization using Python Creating shapes Benoit Corsini

@

Shapes in matplotlib:

Circle, Rectangle, Polygon, etc

patch = Circle((0, 0), ...)
ax.add_patch(patch)

patch = ax.add patch(Circle((0, 0), ...))

patch.set(...) Q
()5: Create a sphere.

— Al solutions (Al-know, ChatGPT, Gemini)

Visualization using Python Creating shapes Benoit Corsini

3D effect

Shapes in matplotlib:

e Circle, Rectangle, Polygon, etc

e patch = Circle((0, 0), ...)

e ax.add patch(patch)

e patch = ax.add patch(Circle((0, 0), ...))
e patch.set(...)

()5: Create a sphere.

Visualization using Python Creating shapes Benoit Corsini

3D effect

def add_circle(self, xy=(0, 0), radius=1, *args, *xkwargs):
return self.ax.add_patch(Circle(
Xy=Xy,
radius=radius,

*args,
x*kwargs,
if name ==’ main_ ’:

vis = Visual.square(dpi=500)
vis.set_boundary(2)

sphere = vis.add _circle(color=’darkgreen’)
vis.new frame()

Visualization using Python Creating shapes

Benoit Corsini

3D effect

def add_circle(self, xy=(0, 0), radius=1, *args, *xkwargs):
return self.ax.add_patch(Circle(
Xy=Xy,
radius=radius,

*args,
x*kwargs,
if name ==’ main_ ’:

vis = Visual.square(dpi=500)
vis.set_boundary(2)

sphere = vis.add _circle(color=’darkgreen’)
vis.new frame()

Visualization using Python Creating shapes

Benoit Corsini

3D effect

side shift = 0.1

light = vis.add_circle(
xy=(-side_shift, side_shift),
color="forestgreen’,

)

vis.new_frame()

light.set_clip_path(sphere)

vis.new frame()

sphere.set_1w(0)

light.set_1w(0)

vis.new_ frame()

Benoit Corsini

Visualization using Python

Creating shapes

3D effect

side shift = 0.1

light = vis.add_circle(
xy=(-side_shift, side_shift),
color="forestgreen’,

)

vis.new_frame()

light.set_clip_path(sphere)

vis.new frame()

sphere.set_1w(0)

light.set_1w(0)

vis.new_ frame()

Visualization using Python

Creating shapes

Benoit Corsini

3D effect

shade = vis.add circle(

xy=(0.5, -0.5),
color="forestgreen’,
1lw=0,

)

vis.new_frame()

shade.set_zorder(0)

vis.new frame()

shade.set_alpha(0.2)

vis.new frame()

Visualization using Python Creating shapes Benoit Corsini

3D effect

shade = vis.add circle(

xy=(0.5, -0.5),
color="forestgreen’,
1lw=0,

)

vis.new_frame()
shade.set_zorder(0)
vis.new frame()
shade.set_alpha(0.2)
vis.new frame()

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

Since spheres are created using three circles, it is easier to create methods to handle them together.

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

Since spheres are created using three circles, it is easier to create methods to handle them together.

e We implement new sphere, which creates and returns a dictionary named sphere, containing
the three circles as well as other parameters (their position, radius, etc).

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

Since spheres are created using three circles, it is easier to create methods to handle them together.

e We implement new sphere, which creates and returns a dictionary named sphere, containing
the three circles as well as other parameters (their position, radius, etc).

e We implement update sphere, which directly applies to the dictionary of a sphere and should
thus be called using update sphere(**sphere).

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

Since spheres are created using three circles, it is easier to create methods to handle them together.

e We implement new sphere, which creates and returns a dictionary named sphere, containing
the three circles as well as other parameters (their position, radius, etc).

e We implement update sphere, which directly applies to the dictionary of a sphere and should
thus be called using update sphere(**sphere).

The new _sphere and update sphere methods are already in the solution of Q5:

https://www.benoitcorsini.com/files/matplotlib/q5.py

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def new_sphere(self,
color=’"forestgreen’,
dark=’darkgreen’,

alpha=0.2,
x*kwargs,
) :
sphere = {
key : vis.add circle(color=color, 1lw=0)
for key in [’main’, ’light’, ’shade’]
¥

sphere.update (x*kwargs)
sphere[’main’].set_color(dark)
sphere[’shade’] .set(alpha=alpha, zorder=0)
return sphere

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def new_sphere(self,
color=’"forestgreen’,
dark=’darkgreen’,

alpha=0.2,
x*kwargs,
) :
sphere = {
key : vis.add circle(color=color, 1lw=0)
for key in [’main’, ’light’, ’shade’]
¥

sphere.update (x*kwargs)
sphere[’main’].set_color(dark)
sphere[’shade’] .set(alpha=alpha, zorder=0)
return sphere

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def new_sphere(self,
color=’"forestgreen’,
dark=’darkgreen’,

alpha=0.2,
x*kwargs,
) :
sphere = {
key : vis.add circle(color=color, 1lw=0)
for key in [’main’, ’light’, ’shade’]
¥

sphere.update (x*kwargs)
sphere[’main’].set_color(dark)
sphere[’shade’] .set(alpha=alpha, zorder=0)
return sphere

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def new_sphere(self,
color="forestgreen’,
dark=’darkgreen’,

alpha=0.2,
x*kwargs,
) :
sphere = {
key : vis.add circle(color=color, 1lw=0)
for key in [’main’, ’light’, ’shade’]
¥

sphere.update (x*kwargs)
sphere[’main’].set_color(dark)
sphere[’shade’] .set(alpha=alpha, zorder=0)
return sphere

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def new_sphere(self,
color="forestgreen’,
dark=’darkgreen’,

alpha=0.2,

**kwargs, update_sphere
) :
sphere = {

key : vis.add circle(color=color, 1lw=0)

for key in [’main’, ’light’, ’shade’]
¥

sphere.update (x*kwargs)
sphere[’main’].set_color(dark)
sphere[’shade’] .set(alpha=alpha, zorder=0)
return sphere

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def new_sphere(self,
color="forestgreen’,
dark=’darkgreen’,

alpha=0.2,

**kwargs, update_sphere
) :
sphere = {

key : vis.add circle(color=color, 1lw=0)

for key in [’main’, ’light’, ’shade’]
¥

sphere.update (x*kwargs)
sphere[’main’].set_color(dark)
sphere[’shade’] .set(alpha=alpha, zorder=0)
return sphere

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def new_sphere(self,
color="forestgreen’,
dark=’darkgreen’,

alpha=0.2,

**kwargs, update_sphere
) :
sphere = {

key : vis.add circle(color=color, 1lw=0)

for key in [’main’, ’light’, ’shade’] main, light shade
¥

sphere.update (x*kwargs)
sphere[’main’].set_color(dark)
sphere[’shade’] .set(alpha=alpha, zorder=0)
return sphere

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def new_sphere(self,
color="forestgreen’,
dark=’darkgreen’,

alpha=0.2,

**kwargs, update_sphere
) :
sphere = {

key : vis.add circle(color=color, 1lw=0)

for key in [’main’, ’light’, ’shade’] main, light shade
¥
sphere.update (x*kwargs) sphere

sphere[’main’].set_color(dark)
sphere[’shade’] .set(alpha=alpha, zorder=0)
return sphere

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def new_sphere(self,
color="forestgreen’,
dark=’darkgreen’,

alpha=0.2,

**kwargs, update_sphere
) :
sphere = {

key : vis.add circle(color=color, 1lw=0)

for key in [’main’, ’light’, ’shade’] main, light shade
¥
sphere.update (x*kwargs) sphere

sphere[’main’].set_color(dark)
sphere[’shade’] .set(alpha=alpha, zorder=0)
return sphere

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def new_sphere(self,
color="forestgreen’,
dark=’darkgreen’,

alpha=0.2,

**kwargs, update_sphere
) :
sphere = {

key : vis.add circle(color=color, 1lw=0)

for key in [’main’, ’light’, ’shade’] main, light shade
¥
sphere.update (x*kwargs) sphere

sphere[’main’].set_color(dark)
sphere[’shade’] .set(alpha=alpha, zorder=0)
return sphere

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def update_sphere(self, main, light, shade,
xy=(0, 0),
radius=1,
height=0,
shift=(0.4, -0.8),
side=0.15,
shadow=0.5,
) :
Xy = np.array(xy)
shift = np.array(shift)
for circle in [main, light, shade]:
circle.set radius(radius)
main.set_center(xy + np.array([0, height]))
light.set_center(xy - radius*side*shift + np.array([0, height]))
shade _shift = height*shadow + radius/np.sum(shift**2)**0.5
shade.set_center(xy + shade_shift*shift)
light.set_clip _path(main)

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def update_sphere(self, main, light, shade,
xy=(0, 0),
radius=1,
height=0,
shift=(0.4, -0.8),
side=0.15,
shadow=0.5,
) :
Xy = np.array(xy)
shift = np.array(shift)
for circle in [main, light, shade]:
circle.set radius(radius)
main.set_center(xy + np.array([0, height]))
light.set_center(xy - radius*side*shift + np.array([0, height]))
shade _shift = height*shadow + radius/np.sum(shift**2)**0.5
shade.set_center(xy + shade_shift*shift)
light.set_clip _path(main)

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def update_sphere(self, main, light, shade,
xy=(0, 0),
radius=1,
height=0,
shift=(0.4, -0.8),
side=0.15,
shadow=0.5,
) :
Xy = np.array(xy)
shift = np.array(shift)
for circle in [main, light, shade]:
circle.set radius(radius)
main.set_center(xy + np.array([0, height]))
light.set_center(xy - radius*side*shift + np.array([0, height]))
shade _shift = height*shadow + radius/np.sum(shift**2)**0.5
shade.set_center(xy + shade_shift*shift)
light.set_clip _path(main)

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def update_sphere(self, main, light, shade,
xy=(0, 0),
radius=1,
height=0,
shift=(0.4, -0.8),
side=0.15,
shadow=0.5,
) :
Xy = np.array(xy)
shift = np.array(shift)
for circle in [main, light, shade]:
circle.set radius(radius)
main.set_center(xy + np.array([0, height]))
light.set_center(xy - radius*side*shift + np.array([0, height]))
shade _shift = height*shadow + radius/np.sum(shift**2)**0.5
shade.set_center(xy + shade_shift*shift)
light.set_clip _path(main)

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def update_sphere(self, main, light, shade,
xy=(0, 0),
radius=1,
height=0,
shift=(0.4, -0.8),
side=0.15,
shadow=0.5,
) :
Xy = np.array(xy)
shift = np.array(shift)
for circle in [main, light, shade]:
circle.set radius(radius)
main.set_center(xy + np.array([0, height]))
light.set_center(xy - radius*side*shift + np.array([0, height]))
shade _shift = height*shadow + radius/np.sum(shift**2)**0.5
shade.set_center(xy + shade_shift*shift)
light.set_clip _path(main)

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def update_sphere(self, main, light, shade,
xy=(0, 0),
radius=1,
height=0,
shift=(0.4, -0.8),
side=0.15,
shadow=0.5,
) :
Xy = np.array(xy)
shift = np.array(shift)
for circle in [main, light, shade]:
circle.set radius(radius)
main.set_center(xy + np.array([0, height]))
light.set_center(xy - radius*side*shift + np.array([0, height]))
shade _shift = height*shadow + radius/np.sum(shift**2)**0.5
shade.set_center(xy + shade_shift*shift)
light.set_clip _path(main)

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def update_sphere(self, main, light, shade,
xy=(0, 0),
radius=1,
height=0,
shift=(0.4, -0.8),
side=0.15,
shadow=0.5,
) :
Xy = np.array(xy)
shift = np.array(shift)
for circle in [main, light, shade]:
circle.set radius(radius)
main.set_center(xy + np.array([0, height]))
light.set_center(xy - radius*side*shift + np.array([0, height]))
shade _shift = height*shadow + radius/np.sum(shift**2)**0.5
shade.set_center(xy + shade_shift*shift)
light.set_clip _path(main)

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def update_sphere(self, main, light, shade,
xy=(0, 0),
radius=1,
height=0,
shift=(0.4, -0.8),
side=0.15,
shadow=0.5,
) :
Xy = np.array(xy)
shift = np.array(shift)
for circle in [main, light, shade]:
circle.set radius(radius)
main.set_center(xy + np.array([0, height]))
light.set_center(xy - radius*side*shift + np.array([0, height]))
shade _shift = height*shadow + radius/np.sum(shift**2)**0.5
shade.set_center(xy + shade_shift*shift)
light.set_clip _path(main)

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def update_sphere(self, main, light, shade,
xy=(0, 0),
radius=1,
height=0,
shift=(0.4, -0.8),
side=0.15,
shadow=0.5,
) :
Xy = np.array(xy)
shift = np.array(shift)
for circle in [main, light, shade]:
circle.set radius(radius)
main.set_center(xy + np.array([0, height])) main height Xy
light.set_center(xy - radius*side*shift + np.array([0, height]))
shade _shift = height*shadow + radius/np.sum(shift**2)**0.5
shade.set_center(xy + shade_shift*shift)
light.set_clip _path(main)

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def update_sphere(self, main, light, shade,
xy=(0, 0),
radius=1,
height=0,
shift=(0.4, -0.8),
side=0.15,
shadow=0.5,
) :
Xy = np.array(xy)
shift = np.array(shift)
for circle in [main, light, shade]:
circle.set radius(radius)
main.set_center(xy + np.array([0, height])) main height Xy
light.set_center(xy - radius*side*shift + np.array([0, height])) light main shift
shade _shift = height*shadow + radius/np.sum(shift**2)**0.5
shade.set_center(xy + shade_shift*shift)
light.set_clip _path(main)

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def update_sphere(self, main, light, shade,

xy=(0, 0),
radius=1,
height=0,
shift=(0.4, -0.8),
side=0.15,
shadow=0.5,

)

Xy = np.array(xy)

shift = np.array(shift)

for circle in [main, light, shade]:
circle.set radius(radius)

main.set_center(xy + np.array([0, height])) main height Xy
light.set_center(xy - radius*side*shift + np.array([0, height])) light main shift
shade _shift = height*shadow + radius/np.sum(shift**2)**0.5

shade.set_center(xy + shade_shift*shift) shade Xy shift

light.set_clip _path(main)

Visualization using Python Creating shapes Benoit Corsini

Creating a sphere

def update_sphere(self, main, light, shade,

xy=(0, 0),
radius=1,
height=0,
shift=(0.4, -0.8),
side=0.15,
shadow=0.5,

)

Xy = np.array(xy)

shift = np.array(shift)

for circle in [main, light, shade]:
circle.set radius(radius)

main.set_center(xy + np.array([0, height])) main height Xy
light.set_center(xy - radius*side*shift + np.array([0, height])) light main shift
shade _shift = height*shadow + radius/np.sum(shift**2)**0.5

shade.set_center(xy + shade_shift*shift) shade Xy shift
light.set_clip _path(main) light main

Visualization using Python Creating shapes Benoit Corsini

Creating spheres

Visualization using Python Creating shapes Benoit Corsini

Creating spheres

()6: Create a custom number of spheres.

Visualization using Python Creating shapes Benoit Corsini

Creating spheres

()6: Create a custom number of spheres.

Visualization using Python Creating shapes Benoit Corsini

Creating spheres

def make_spheres(self, number, ratio=0.5, *args, *xkwargs):
self.spheres = []
for i in range(number) :

for j in range(number):
xy = (2%i + 1)/number - 1, 1 - (2%j + 1)/number
sphere = self.new_sphere(
radius=ratio/number,
XY=XY ,
*args,

x*kwargs,
)
self .update_sphere (**sphere)
self.spheres.append(sphere)

Visualization using Python Creating shapes Benoit Corsini

Creating spheres

if name ==’ main_ ’:
vis = Visual.square(dpi=500)
vis.set_boundary()

for n in range(l, 5):
vis.make spheres(n)
vis.new_frame()
for sphere in vis.spheres:
sphere[’main’] .set_visible(False)
sphere[’light’] .set_visible(False)

sphere[’shade’] .set_visible(False)

Visualization using Python Creating shapes Benoit Corsini

Dropping spheres

Visualization using Python Creating shapes Benoit Corsini

Dropping spheres

()7: Create dropping spheres.

Visualization using Python Creating shapes Benoit Corsini

Dropping spheres

LA

()7: Create dropping spheres.

Visualization using Python Creating shapes Benoit Corsini

Dropping spheres

def get height(self,
index=0,

height spread=1,
height_period=0.5, .
height_drop=0.25, ‘

max_height=4.5,

):
if not hasattr(self, ’height shifts’): ‘ —

self .height_shifts = np.random.rand(len(self.spheres))

shifts = index - self.fps*height spread*self.height shifts
shifts = shifts*(shifts >= 0)
flucts = np.abs(np.cos(np.pi*shifts/self.fps/height_period))

heights = np.exp(-shifts/self.fps/height drop)
return max_height*flucts*heights

Visualization using Python Creating shapes Benoit Corsini

Dropping spheres

def

drop_spheres(self, duration, *args, **kwargs):

for index in range(self.duration_to_number(duration)):

heights = self.get _height(index, *args, **kwargs)
for sphere, height in zip(self.spheres, heights):

self.update_sphere(height=height, **sphere)
self.new _frame()

if name ==’ main_ ’:

vis

vis.

vis
vis

= Visual.square(dpi=500)
set_boundary()

.make spheres(2)
.drop_spheres (0.5,

height spread=0.2,
height_period=0.1,
height drop=0.05,

Visualization using Python Creating shapes

Benoit Corsini

Schrinking spheres

Visualization using Python Creating shapes Benoit Corsini

Schrinking spheres

()8: Create schrinking spheres.

Visualization using Python Creating shapes Benoit Corsini

Schrinking spheres

()8: Create schrinking spheres.

ooooo

ooooo

Visualization using Python

Creating shapes

Benoit Corsini

Schrinking spheres

®© © ® @ O||° © o o o
®© ©® @ ® O||° © o o o
® ® ©® @ O||° © o o o
def schrink spheres(self, duration): © 000 0|l 0o ¢ oo
n_steps = self.duration_to_number(duration) © 000 0jfc 0 ¢ o o
radius = self.spheres[0] [’main’].get_radius() o000 0|[lc ¢ o o
for index in range(n_steps): © 000 0f|c o o oo
ratio = 1 - (1 + index)/n_steps S Q8Q Qs s s s
for sphere in self.spheres: 98888/ |s s s
e 000 0|l ¢ ¢ oo
sphere[’radius’] = ratio*radius
self .update_sphere (**sphere) L B O
self .new_frame() i | DS
- XEEXIIEEEEE
X EEEXKIIEEEEE
X EEXIIEEEREEK
e 6 6 ¢ o e o o o o
if __name__ == ’_ main__’: o000 olle « ..
vis = Visual.square(dpi=500) e oo e ol ¢ o ¢
vis.set_boundary() eo0 o0 e o|fe o oo
vis.make_spheres(5) © © 0 0 0l o o o o
vis.schrink spheres(0.5) e o o o o
e 6 o o o
e 6 o o o
e 6 o o o
e 6 o o o

Visualization using Python Creating shapes Benoit Corsini

Table of contents

e Creating drawings

Visualization using Python Creating drawings Benoit Corsini

Drawings

Visualization using Python Creating drawings Benoit Corsini

Drawings

The Path class is useful in creating curved shapes.

Visualization using Python Creating drawings Benoit Corsini

The Path class is useful in creating curved shapes.
path = Path([(0, 0), (1, 1)]1) creates a line from (0,0) to (1,1).

Visualization using Python Creating drawings Benoit Corsini

The Path class is useful in creating curved shapes.
path = Path([(0, 0), (1, 1)]1) creates a line from (0,0) to (1,1).
path = TextPath((0, 0), ’ABC’) creates a curve drawing 'ABC..

Visualization using Python Creating drawings Benoit Corsini

The Path class is useful in creating curved shapes.
path = Path([(0, 0), (1, 1)]1) creates a line from (0,0) to (1,1).
path = TextPath((0, 0), ’ABC’) creates a curve drawing 'ABC..
patch = ax.add patch(PathPatch(path, ...)) represents the curve.

Visualization using Python Creating drawings Benoit Corsini

Drawings

The Path class is useful in creating curved shapes.
path = Path([(0, 0), (1, 1)]1) creates a line from (0,0) to (1,1).
path = TextPath((0, 0), ’ABC’) creates a curve drawing 'ABC..
patch = ax.add patch(PathPatch(path, ...)) represents the curve.

Visualization using Python Creating drawings Benoit Corsini

Drawings

The Path class is useful in creating curved shapes.
path = Path([(0, 0), (1, 1)]1) creates a line from (0,0) to (1,1).
path = TextPath((0, 0), ’ABC’) creates a curve drawing 'ABC..
patch = ax.add patch(PathPatch(path, ...)) represents the curve.

()9: Create these two images.

Visualization using Python Creating drawings Benoit Corsini

Drawings

The Path class is useful in creating curved shapes.
path = Path([(0, 0), (1, 1)]1) creates a line from (0,0) to (1,1).
path = TextPath((0, 0), ’ABC’) creates a curve drawing 'ABC..
patch = ax.add patch(PathPatch(path, ...)) represents the curve.

()9: Create these two images.

— Al solutions (Al-know, ChatGPT, Gemini)

Visualization using Python Creating drawings Benoit Corsini

The Path class is useful in creating curved shapes.
path = Path([(0, 0), (1, 1)]1) creates a line from (0,0) to (1,1).
path = TextPath((0, 0), ’ABC’) creates a curve drawing 'ABC..
patch = ax.add patch(PathPatch(path, ...)) represents the curve.

()9: Create these two images.

><

— Al solutions (Al-know, ChatGPT, Gemini)

Visualization using Python Creating drawings Benoit Corsini

Drawings

The Path class is useful in creating curved shapes.
path = Path([(0, 0), (1, 1)]1) creates a line from (0,0) to (1,1).
path = TextPath((0, 0), ’ABC’) creates a curve drawing 'ABC..
patch = ax.add patch(PathPatch(path, ...)) represents the curve.

()9: Create these two images.

Visualization using Python Creating drawings Benoit Corsini

Drawings

if name ==’ main_ ’:

vis = Visual.square(dpi=500)

vis.set_boundary(1.5)

N = vis.ax.add_patch(PathPatch(
path=Path([(-1, -1), (-1, 1), (1, -1), (1, DD,
1lw=3,

)

T = vis.ax.add_patch(PathPatch(
path=TextPath(xy=(-1, 0), s=’Text’, size=1),
color=’crimson’,

)

vis.new frame()
N.set fill(False)
T.set_1w(0)
vis.new frame()

Visualization using Python Creating drawings Benoit Corsini

Drawings

Visualization using Python Creating drawings Benoit Corsini

Drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.

Visualization using Python Creating drawings Benoit Corsini

Drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
Using matplotlib.transforms is the recommended way, but not covered here.

Visualization using Python Creating drawings Benoit Corsini

Drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
Using matplotlib.transforms is the recommended way, but not covered here.

path.vertices gives acces to the vertices of the curve as a numpy array.

Visualization using Python Creating drawings Benoit Corsini

Drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
Using matplotlib.transforms is the recommended way, but not covered here.

path.vertices gives acces to the vertices of the curve as a numpy array.
bbox = path.get extents() provides a bounding box containing the text.

Visualization using Python Creating drawings Benoit Corsini

Drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
Using matplotlib.transforms is the recommended way, but not covered here.

path.vertices gives acces to the vertices of the curve as a numpy array.
bbox = path.get extents() provides a bounding box containing the text.
bbox is an element of matplotlib.transforms.Bbox, with useful properties.

Visualization using Python Creating drawings Benoit Corsini

Drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.
Using matplotlib.transforms is the recommended way, but not covered here.

path.vertices gives acces to the vertices of the curve as a numpy array.
bbox = path.get extents() provides a bounding box containing the text.
bbox is an element of matplotlib.transforms.Bbox, with useful properties.

Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Creating drawings Benoit Corsini

Visualization using Python

Drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist. O

Using matplotlib.transforms is the recommended way, but not covered here.
path.vertices gives acces to the vertices of the curve as a numpy array.

bbox = path.get extents() provides a bounding box containing the text.
bbox is an element of matplotlib.transforms.Bbox, with useful properties.

Path(a*path.vertices + b, path.codes) linearly transforms the curve.

Creating drawings Benoit Corsini

Visualization using Python

Drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist. O

Using matplotlib.transforms is the recommended way, but not covered here.
path.vertices gives acces to the vertices of the curve as a numpy array.

bbox = path.get extents() provides a bounding box containing the text.
bbox is an element of matplotlib.transforms.Bbox, with useful properties.

Path(a*path.vertices + b, path.codes) linearly transforms the curve.

(Q10: Create these three images.

Creating drawings Benoit Corsini

Visualization using Python

Drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.

Using matplotlib.transforms is the recommended way, but not covered here.

path.vertices gives acces to the vertices of the curve as a numpy array.
bbox = path.get extents() provides a bounding box containing the text.
bbox is an element of matplotlib.transforms.Bbox, with useful properties.

Path(a*path.vertices + b, path.codes) linearly transforms the curve.

(Q10: Create these three images.

— Al solutions (Al-know, ChatGPT, Gemini)

Creating drawings

Benoit Corsini

Visualization using Python

Drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist.

Using matplotlib.transforms is the recommended way, but not covered here.

path.vertices gives acces to the vertices of the curve as a numpy array.
bbox = path.get extents() provides a bounding box containing the text.
bbox is an element of matplotlib.transforms.Bbox, with useful properties.

Path(a*path.vertices + b, path.codes) linearly transforms the curve.

(Q10: Create these three images.

— Al solutions (Al-know, ChatGPT, Gemini)

Creating drawings

Benoit Corsini

Visualization using Python

Drawings

Aligning TextPath is difficult because of its default anchor, but alternatives exist. O

Using matplotlib.transforms is the recommended way, but not covered here.
path.vertices gives acces to the vertices of the curve as a numpy array.

bbox = path.get extents() provides a bounding box containing the text.
bbox is an element of matplotlib.transforms.Bbox, with useful properties.

Path(a*path.vertices + b, path.codes) linearly transforms the curve.

(Q10: Create these three images.

Creating drawings Benoit Corsini

Visualization using Python

Drawings

if name ==’ main_ ’:
vis = Visual.square(dpi=500)
vis.set_boundary()
path = TextPath(xy=(0, 0), s=’\u2665’, size=1)
patch = vis.ax.add_patch(PathPatch(path=path))
patch.set(lw=5, color=’crimson’, fill=False, joinstyle=’round’)
vis.new frame()
bbox = path.get _extents()
vertices = (path.vertices - (bbox.pO + bbox.pl)/2)/bbox.size
path = Path(vertices=vertices, codes=path.codes)
patch.set (path=path)
vis.new frame()
vis.set_boundary(0.5)
patch.set(lw=0, fill=True)
vis.new frame()

Visualization using Python Creating drawings

Benoit Corsini

Drawing a heart

Visualization using Python Creating drawings Benoit Corsini

Drawing a heart

The solution of (D10 includes the following code which automatically adds a patch accessed using the
heart attribute of the class.

Visualization using Python Creating drawings Benoit Corsini

Drawing a heart

The solution of (D10 includes the following code which automatically adds a patch accessed using the
heart attribute of the class.

def add_heart(self, size=1, *args, **kwargs):
path = TextPath(xy=(0, 0), s=’\u2665’, size=1)
bbox = path.get_extents()
vertices = sizex(path.vertices - (bbox.p0 + bbox.pl)/2)/bbox.size
path = Path(vertices=vertices, codes=path.codes)
self.heart = vis.ax.add_patch(PathPatch(path=path, *args, **xkwargs))

Visualization using Python Creating drawings Benoit Corsini

Drawing a heart

The solution of (D10 includes the following code which automatically adds a patch accessed using the
heart attribute of the class.

def add_heart(self, size=1, *args, **kwargs):
path = TextPath(xy=(0, 0), s=’\u2665’, size=1)
bbox = path.get_extents()
vertices = sizex(path.vertices - (bbox.p0 + bbox.pl)/2)/bbox.size
path = Path(vertices=vertices, codes=path.codes)
self.heart = vis.ax.add_patch(PathPatch(path=path, *args, **kwargs))

Visualization using Python Creating drawings Benoit Corsini

Drawing a heart

Visualization using Python Creating drawings Benoit Corsini

Drawing a heart

(Q11: Create the drawn heart effect.

Visualization using Python Creating drawings Benoit Corsini

Drawing a heart

(Q11: Create the drawn heart effect.

AR
SNBSS 73

Visualization using Python Creating drawings Benoit Corsini

Drawing a heart

def draw_heart(self, duration, *args, **kwargs):
n_steps = self.duration_to_number(duration)
wedge = self.ax.add_patch(
Wedge((0, 0), 1, 270, 270, visible=False)
)
self .heart.set_clip_path(wedge)
for index in range(n_steps):
wedge.set_thetal (270 - 360*(1 + index)/n_steps)
self.new _frame()
if name ==’ main_ ’:
vis = Visual.square(dpi=500)
vis.set_boundary()
vis.add_heart(ec=’crimson’, lw=2, fill=False, joinstyle=’round’)
vis.draw_heart(0.5)

21 EelFel Palie
SNBSS 73

Visualization using Python Creating drawings

Benoit Corsini

Zooming effect

Visualization using Python Creating drawings Benoit Corsini

Zooming effect

(D12: Create a zooming and fading effect.

Visualization using Python Creating drawings Benoit Corsini

Zooming effect

(D12: Create a zooming and fading effect.

Visualization using Python Creating drawings Benoit Corsini

Zooming effect

def zoom in(self, duration, zoom=0.5):
n_steps = self.duration_to_number(duration)

for index in range(n_steps):
ratio = (1 + index)/n_steps
self.heart.set fc((1, 1, 1, ratio))
self.set_boundary(l - ratio*(l - zoom))
self .new_frame()

if name ==’ main_ ’:
vis = Visual.square(dpi=500)

vis.set_boundary()
vis.add_image(filename=’singapore.jpg’, shift=0.4)
vis.add_heart(ec=’crimson’, lw=2, joinstyle=’round’)
vis.zoom in(0.5, zoom=0.2)

Visualization using Python Creating drawings Benoit Corsini

Table of contents

* Conclusion

Visualization using Python Conclusion Benoit Corsini

Final video

Visualization using Python Conclusion Benoit Corsini

Final video

(D13: Combine all functions to create the original video.

Visualization using Python Conclusion Benoit Corsini

Final video

il li\ll'.““‘l““s;i

(D13: Combine all functions to create the original video.

Visualization using Python Conclusion

Benoit Corsini

Final video

if name ==’ main_ ’:

vis

vis.

vis
vis

vis.

vis
vis
vis
vis
vis
vis
vis
vis
vis
vis
vis

.wait(duration=0.5)
.add_image (filename=’singapore. jpg’, shift=0.4)

.wait (duration=0.5)

.make_spheres (number=5, color=’gold’, dark=’darkgoldenrod’)
.drop_spheres (duration=3)

.schrink spheres(duration=1)

.wait (duration=0.5)

.add_heart(size=1.5)

.heart.set(ec=’crimson’, fc=4x%[0], 1lw=3, joinstyle=’round’)
.draw_heart (duration=1)

.wait(duration=0.5)

.zoom_in(duration=1, zoom=0.2)

.make video()

= Visual.square(dpi=1000)
set_boundary()

image_appear (duration=1)

Visualization using Python Conclusion Benoit Corsini

Final comments

Visualization using Python Conclusion Benoit Corsini

Final comments

Hopefully, this presentation helped understand matplotlib and its potential.

Visualization using Python Conclusion Benoit Corsini

Final comments

Hopefully, this presentation helped understand matplotlib and its potential.
e Create detailed images pixel by pixel.

Visualization using Python Conclusion Benoit Corsini

Final comments

Hopefully, this presentation helped understand matplotlib and its potential.
e Create detailed images pixel by pixel.
e Use shapes to represent 3D effects.

Visualization using Python Conclusion Benoit Corsini

Final comments

Hopefully, this presentation helped understand matplotlib and its potential.
e Create detailed images pixel by pixel.
e Use shapes to represent 3D effects.

e Combine texts and curves for personalized designs.

Visualization using Python Conclusion Benoit Corsini

Final comments

Hopefully, this presentation helped understand matplotlib and its potential.
e Create detailed images pixel by pixel.
e Use shapes to represent 3D effects.

e Combine texts and curves for personalized designs.

This package also contains other useful tools not covered here.

Visualization using Python Conclusion Benoit Corsini

Final comments

Hopefully, this presentation helped understand matplotlib and its potential.
e Create detailed images pixel by pixel.
e Use shapes to represent 3D effects.

e Combine texts and curves for personalized designs.

This package also contains other useful tools not covered here.
matplotlib.transforms for moving shapes around.

Visualization using Python Conclusion Benoit Corsini

Final comments

Hopefully, this presentation helped understand matplotlib and its potential.
e Create detailed images pixel by pixel.
e Use shapes to represent 3D effects.

e Combine texts and curves for personalized designs.

This package also contains other useful tools not covered here.
matplotlib.transforms for moving shapes around.

matplotlib.colors for creating smooth color transitions.

Visualization using Python Conclusion Benoit Corsini

Final comments

Hopefully, this presentation helped understand matplotlib and its potential.
e Create detailed images pixel by pixel.
e Use shapes to represent 3D effects.

e Combine texts and curves for personalized designs.

This package also contains other useful tools not covered here.
matplotlib.transforms for moving shapes around.

matplotlib.colors for creating smooth color transitions.

And so much more still remain to be discovered and applied!

Visualization using Python Conclusion Benoit Corsini

Thank you!

-
@ ik
¢ S
L x
= -
© =
=
T
Iu.
@
>
"
= E
(S S
= =
b £

